Resultados totales (Incluyendo duplicados): 34661
Encontrada(s) 3467 página(s)
Encontrada(s) 3467 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328258
Dataset. 2022
TABLE_8_FROM MOUSE TO HUMAN: CELLULAR MORPHOMETRIC SUBTYPE LEARNED FROM MOUSE MAMMARY TUMORS PROVIDES PROGNOSTIC VALUE IN HUMAN BREAST CANCER.XLSX [DATASET]
- Chang, Hang
- Yang, Xu
- Moore, Jade
- Liu, Xiao-Ping
- Jen, Kuang-Yu
- Snijders, Antoine M.
- Ma, Lin
- Chou, William
- Corchado Cobos, Roberto
- García-Sancha, Natalia
- Mendiburu-Eliçabe, Marina
- Pérez-Losada, J.
- Barcellos-Hoff, Mary Helen
- Mao, Jian-Hua
Supplementary Table 8. Gene ontology (GO) functional enrichment analysis of the differentially expressed genes (DEGs) for biological processes., Mouse models of cancer provide a powerful tool for investigating all aspects of cancer biology. In this study, we used our recently developed machine learning approach to identify the cellular morphometric biomarkers (CMB) from digital images of hematoxylin and eosin (H&E) micrographs of orthotopic Trp53-null mammary tumors (n = 154) and to discover the corresponding cellular morphometric subtypes (CMS). Of the two CMS identified, CMS-2 was significantly associated with shorter survival (p = 0.0084). We then evaluated the learned CMB and corresponding CMS model in MMTV-Erbb2 transgenic mouse mammary tumors (n = 53) in which CMS-2 was significantly correlated with the presence of metastasis (p = 0.004). We next evaluated the mouse CMB and CMS model on The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort (n = 1017). Kaplan–Meier analysis showed significantly shorter overall survival (OS) of CMS-2 patients compared to CMS-1 patients (p = 0.024) and added significant prognostic value in multi-variable analysis of clinical and molecular factors, namely, age, pathological stage, and PAM50 molecular subtype. Thus, application of CMS to digital images of routine workflow H&E preparations can provide unbiased biological stratification to inform patient care., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/328258
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328258
HANDLE: http://hdl.handle.net/10261/328258
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328258
PMID: http://hdl.handle.net/10261/328258
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328258
Ver en: http://hdl.handle.net/10261/328258
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328258
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328398
Dataset. 2022
TABLE_9_FROM MOUSE TO HUMAN: CELLULAR MORPHOMETRIC SUBTYPE LEARNED FROM MOUSE MAMMARY TUMORS PROVIDES PROGNOSTIC VALUE IN HUMAN BREAST CANCER.XLSX [DATASET]
- Chang, Hang
- Yang, Xu
- Moore, Jade
- Liu, Xiao-Ping
- Jen, Kuang-Yu
- Snijders, Antoine M.
- Ma, Lin
- Chou, William
- Corchado Cobos, Roberto
- García-Sancha, Natalia
- Mendiburu-Eliçabe, Marina
- Pérez-Losada, J.
- Barcellos-Hoff, Mary Helen
- Mao, Jian-Hua
Supplementary Table 9. Gene ontology (GO) functional enrichment analysis of the differentially expressed genes (DEGs) for cellular component., Mouse models of cancer provide a powerful tool for investigating all aspects of cancer biology. In this study, we used our recently developed machine learning approach to identify the cellular morphometric biomarkers (CMB) from digital images of hematoxylin and eosin (H&E) micrographs of orthotopic Trp53-null mammary tumors (n = 154) and to discover the corresponding cellular morphometric subtypes (CMS). Of the two CMS identified, CMS-2 was significantly associated with shorter survival (p = 0.0084). We then evaluated the learned CMB and corresponding CMS model in MMTV-Erbb2 transgenic mouse mammary tumors (n = 53) in which CMS-2 was significantly correlated with the presence of metastasis (p = 0.004). We next evaluated the mouse CMB and CMS model on The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort (n = 1017). Kaplan–Meier analysis showed significantly shorter overall survival (OS) of CMS-2 patients compared to CMS-1 patients (p = 0.024) and added significant prognostic value in multi-variable analysis of clinical and molecular factors, namely, age, pathological stage, and PAM50 molecular subtype. Thus, application of CMS to digital images of routine workflow H&E preparations can provide unbiased biological stratification to inform patient care., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/328398
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328398
HANDLE: http://hdl.handle.net/10261/328398
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328398
PMID: http://hdl.handle.net/10261/328398
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328398
Ver en: http://hdl.handle.net/10261/328398
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328398
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329402
Dataset. 2022
TABLE_10_FROM MOUSE TO HUMAN: CELLULAR MORPHOMETRIC SUBTYPE LEARNED FROM MOUSE MAMMARY TUMORS PROVIDES PROGNOSTIC VALUE IN HUMAN BREAST CANCER.XLSX [DATASET]
- Chang, Hang
- Yang, Xu
- Moore, Jade
- Liu, Xiao-Ping
- Jen, Kuang-Yu
- Snijders, Antoine M.
- Ma, Lin
- Chou, William
- Corchado Cobos, Roberto
- García-Sancha, Natalia
- Mendiburu-Eliçabe, Marina
- Pérez-Losada, J.
- Barcellos-Hoff, Mary Helen
- Mao, Jian-Hua
Supplementary Table 10. Gene ontology (GO) functional enrichment analysis of the differentially expressed genes (DEGs) for molecular function., Mouse models of cancer provide a powerful tool for investigating all aspects of cancer biology. In this study, we used our recently developed machine learning approach to identify the cellular morphometric biomarkers (CMB) from digital images of hematoxylin and eosin (H&E) micrographs of orthotopic Trp53-null mammary tumors (n = 154) and to discover the corresponding cellular morphometric subtypes (CMS). Of the two CMS identified, CMS-2 was significantly associated with shorter survival (p = 0.0084). We then evaluated the learned CMB and corresponding CMS model in MMTV-Erbb2 transgenic mouse mammary tumors (n = 53) in which CMS-2 was significantly correlated with the presence of metastasis (p = 0.004). We next evaluated the mouse CMB and CMS model on The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort (n = 1017). Kaplan–Meier analysis showed significantly shorter overall survival (OS) of CMS-2 patients compared to CMS-1 patients (p = 0.024) and added significant prognostic value in multi-variable analysis of clinical and molecular factors, namely, age, pathological stage, and PAM50 molecular subtype. Thus, application of CMS to digital images of routine workflow H&E preparations can provide unbiased biological stratification to inform patient care., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/329402
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329402
HANDLE: http://hdl.handle.net/10261/329402
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329402
PMID: http://hdl.handle.net/10261/329402
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329402
Ver en: http://hdl.handle.net/10261/329402
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329402
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329416
Dataset. 2022
TABLE_12_FROM MOUSE TO HUMAN: CELLULAR MORPHOMETRIC SUBTYPE LEARNED FROM MOUSE MAMMARY TUMORS PROVIDES PROGNOSTIC VALUE IN HUMAN BREAST CANCER.XLSX [DATASET]
- Chang, Hang
- Yang, Xu
- Moore, Jade
- Liu, Xiao-Ping
- Jen, Kuang-Yu
- Snijders, Antoine M.
- Ma, Lin
- Chou, William
- Corchado Cobos, Roberto
- García-Sancha, Natalia
- Mendiburu-Eliçabe, Marina
- Pérez-Losada, J.
- Barcellos-Hoff, Mary Helen
- Mao, Jian-Hua
Supplementary Table 12. Cox proportional hazards regression analysis on the overall survival of patients in the TCGA-BRCA cohort., Mouse models of cancer provide a powerful tool for investigating all aspects of cancer biology. In this study, we used our recently developed machine learning approach to identify the cellular morphometric biomarkers (CMB) from digital images of hematoxylin and eosin (H&E) micrographs of orthotopic Trp53-null mammary tumors (n = 154) and to discover the corresponding cellular morphometric subtypes (CMS). Of the two CMS identified, CMS-2 was significantly associated with shorter survival (p = 0.0084). We then evaluated the learned CMB and corresponding CMS model in MMTV-Erbb2 transgenic mouse mammary tumors (n = 53) in which CMS-2 was significantly correlated with the presence of metastasis (p = 0.004). We next evaluated the mouse CMB and CMS model on The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort (n = 1017). Kaplan–Meier analysis showed significantly shorter overall survival (OS) of CMS-2 patients compared to CMS-1 patients (p = 0.024) and added significant prognostic value in multi-variable analysis of clinical and molecular factors, namely, age, pathological stage, and PAM50 molecular subtype. Thus, application of CMS to digital images of routine workflow H&E preparations can provide unbiased biological stratification to inform patient care., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/329416
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329416
HANDLE: http://hdl.handle.net/10261/329416
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329416
PMID: http://hdl.handle.net/10261/329416
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329416
Ver en: http://hdl.handle.net/10261/329416
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329416
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329478
Dataset. 2022
TABLE_1_GENOMIC MAPPING OF COPY NUMBER VARIATIONS INFLUENCING IMMUNE RESPONSE IN BREAST CANCER.XLSX [DATASET]
- López-Cade, Igor
- García-Barberán, Vanesa
- Cabañas, Esther
- Díaz-Tejeiro, Cristina
- Saiz-Ladera, Cristina
- Sanvicente, Adrián
- Pérez-Segura, Pedro
- Pandiella, Atanasio
- Győrffy, Balázs
- Ocaña, Alberto
Identification of genomic alterations that influence the immune response within the tumor microenvironment is mandatory in order to identify druggable vulnerabilities. In this article, by interrogating public genomic datasets we describe copy number variations (CNV) present in breast cancer (BC) tumors and corresponding subtypes, associated with different immune populations. We identified regulatory T-cells associated with the Basal-like subtype, and type 2 T-helper cells with HER2 positive and the luminal subtype. Using gene set enrichment analysis (GSEA) for the Type 2 T-helper cells, the most relevant processes included the ERBB2 signaling pathway and the Fibroblast Growth Factor Receptor (FGFR) signaling pathway, and for CD8+ T-cells, cellular response to growth hormone stimulus or the JAK-STAT signaling pathway. Amplification of ERBB2, GRB2, GRB7, and FGF receptor genes strongly correlated with the presence of type 2 T helper cells. Finally, only 8 genes were highly upregulated and present in the cellular membrane: MILR1, ACE, DCSTAMP, SLAMF8, CD160, IL2RA, ICAM2, and SLAMF6. In summary, we described immune populations associated with genomic alterations with different BC subtypes. We observed a clear presence of inhibitory cells, like Tregs or Th2 when specific chromosomic regions were amplified in basal-like or HER2 and luminal groups. Our data support further evaluation of specific therapeutic strategies in specific BC subtypes, like those targeting Tregs in the basal-like subtype., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/329478
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329478
HANDLE: http://hdl.handle.net/10261/329478
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329478
PMID: http://hdl.handle.net/10261/329478
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329478
Ver en: http://hdl.handle.net/10261/329478
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329478
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329499
Dataset. 2022
TABLE_3_GENOMIC MAPPING OF COPY NUMBER VARIATIONS INFLUENCING IMMUNE RESPONSE IN BREAST CANCER.XLSX [DATASET]
- López-Cade, Igor
- García-Barberán, Vanesa
- Cabañas, Esther
- Díaz-Tejeiro, Cristina
- Saiz-Ladera, Cristina
- Sanvicente, Adrián
- Pérez-Segura, Pedro
- Pandiella, Atanasio
- Győrffy, Balázs
- Ocaña, Alberto
Identification of genomic alterations that influence the immune response within the tumor microenvironment is mandatory in order to identify druggable vulnerabilities. In this article, by interrogating public genomic datasets we describe copy number variations (CNV) present in breast cancer (BC) tumors and corresponding subtypes, associated with different immune populations. We identified regulatory T-cells associated with the Basal-like subtype, and type 2 T-helper cells with HER2 positive and the luminal subtype. Using gene set enrichment analysis (GSEA) for the Type 2 T-helper cells, the most relevant processes included the ERBB2 signaling pathway and the Fibroblast Growth Factor Receptor (FGFR) signaling pathway, and for CD8+ T-cells, cellular response to growth hormone stimulus or the JAK-STAT signaling pathway. Amplification of ERBB2, GRB2, GRB7, and FGF receptor genes strongly correlated with the presence of type 2 T helper cells. Finally, only 8 genes were highly upregulated and present in the cellular membrane: MILR1, ACE, DCSTAMP, SLAMF8, CD160, IL2RA, ICAM2, and SLAMF6. In summary, we described immune populations associated with genomic alterations with different BC subtypes. We observed a clear presence of inhibitory cells, like Tregs or Th2 when specific chromosomic regions were amplified in basal-like or HER2 and luminal groups. Our data support further evaluation of specific therapeutic strategies in specific BC subtypes, like those targeting Tregs in the basal-like subtype., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/329499
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329499
HANDLE: http://hdl.handle.net/10261/329499
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329499
PMID: http://hdl.handle.net/10261/329499
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329499
Ver en: http://hdl.handle.net/10261/329499
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329499
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329505
Dataset. 2022
TABLE_5_GENOMIC MAPPING OF COPY NUMBER VARIATIONS INFLUENCING IMMUNE RESPONSE IN BREAST CANCER.XLSX [DATASET]
- López-Cade, Igor
- García-Barberán, Vanesa
- Cabañas, Esther
- Díaz-Tejeiro, Cristina
- Saiz-Ladera, Cristina
- Sanvicente, Adrián
- Pérez-Segura, Pedro
- Pandiella, Atanasio
- Győrffy, Balázs
- Ocaña, Alberto
Identification of genomic alterations that influence the immune response within the tumor microenvironment is mandatory in order to identify druggable vulnerabilities. In this article, by interrogating public genomic datasets we describe copy number variations (CNV) present in breast cancer (BC) tumors and corresponding subtypes, associated with different immune populations. We identified regulatory T-cells associated with the Basal-like subtype, and type 2 T-helper cells with HER2 positive and the luminal subtype. Using gene set enrichment analysis (GSEA) for the Type 2 T-helper cells, the most relevant processes included the ERBB2 signaling pathway and the Fibroblast Growth Factor Receptor (FGFR) signaling pathway, and for CD8+ T-cells, cellular response to growth hormone stimulus or the JAK-STAT signaling pathway. Amplification of ERBB2, GRB2, GRB7, and FGF receptor genes strongly correlated with the presence of type 2 T helper cells. Finally, only 8 genes were highly upregulated and present in the cellular membrane: MILR1, ACE, DCSTAMP, SLAMF8, CD160, IL2RA, ICAM2, and SLAMF6. In summary, we described immune populations associated with genomic alterations with different BC subtypes. We observed a clear presence of inhibitory cells, like Tregs or Th2 when specific chromosomic regions were amplified in basal-like or HER2 and luminal groups. Our data support further evaluation of specific therapeutic strategies in specific BC subtypes, like those targeting Tregs in the basal-like subtype., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/329505
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329505
HANDLE: http://hdl.handle.net/10261/329505
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329505
PMID: http://hdl.handle.net/10261/329505
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329505
Ver en: http://hdl.handle.net/10261/329505
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329505
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329507
Dataset. 2022
TABLE_6_GENOMIC MAPPING OF COPY NUMBER VARIATIONS INFLUENCING IMMUNE RESPONSE IN BREAST CANCER.XLSX [DATASET]
- López-Cade, Igor
- García-Barberán, Vanesa
- Cabañas, Esther
- Díaz-Tejeiro, Cristina
- Saiz-Ladera, Cristina
- Sanvicente, Adrián
- Pérez-Segura, Pedro
- Pandiella, Atanasio
- Győrffy, Balázs
- Ocaña, Alberto
Identification of genomic alterations that influence the immune response within the tumor microenvironment is mandatory in order to identify druggable vulnerabilities. In this article, by interrogating public genomic datasets we describe copy number variations (CNV) present in breast cancer (BC) tumors and corresponding subtypes, associated with different immune populations. We identified regulatory T-cells associated with the Basal-like subtype, and type 2 T-helper cells with HER2 positive and the luminal subtype. Using gene set enrichment analysis (GSEA) for the Type 2 T-helper cells, the most relevant processes included the ERBB2 signaling pathway and the Fibroblast Growth Factor Receptor (FGFR) signaling pathway, and for CD8+ T-cells, cellular response to growth hormone stimulus or the JAK-STAT signaling pathway. Amplification of ERBB2, GRB2, GRB7, and FGF receptor genes strongly correlated with the presence of type 2 T helper cells. Finally, only 8 genes were highly upregulated and present in the cellular membrane: MILR1, ACE, DCSTAMP, SLAMF8, CD160, IL2RA, ICAM2, and SLAMF6. In summary, we described immune populations associated with genomic alterations with different BC subtypes. We observed a clear presence of inhibitory cells, like Tregs or Th2 when specific chromosomic regions were amplified in basal-like or HER2 and luminal groups. Our data support further evaluation of specific therapeutic strategies in specific BC subtypes, like those targeting Tregs in the basal-like subtype., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/329507
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329507
HANDLE: http://hdl.handle.net/10261/329507
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329507
PMID: http://hdl.handle.net/10261/329507
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329507
Ver en: http://hdl.handle.net/10261/329507
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329507
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329525
Dataset. 2022
TABLE_7_GENOMIC MAPPING OF COPY NUMBER VARIATIONS INFLUENCING IMMUNE RESPONSE IN BREAST CANCER.XLSX [DATASET]
- López-Cade, Igor
- García-Barberán, Vanesa
- Cabañas, Esther
- Díaz-Tejeiro, Cristina
- Saiz-Ladera, Cristina
- Sanvicente, Adrián
- Pérez-Segura, Pedro
- Pandiella, Atanasio
- Győrffy, Balázs
- Ocaña, Alberto
Identification of genomic alterations that influence the immune response within the tumor microenvironment is mandatory in order to identify druggable vulnerabilities. In this article, by interrogating public genomic datasets we describe copy number variations (CNV) present in breast cancer (BC) tumors and corresponding subtypes, associated with different immune populations. We identified regulatory T-cells associated with the Basal-like subtype, and type 2 T-helper cells with HER2 positive and the luminal subtype. Using gene set enrichment analysis (GSEA) for the Type 2 T-helper cells, the most relevant processes included the ERBB2 signaling pathway and the Fibroblast Growth Factor Receptor (FGFR) signaling pathway, and for CD8+ T-cells, cellular response to growth hormone stimulus or the JAK-STAT signaling pathway. Amplification of ERBB2, GRB2, GRB7, and FGF receptor genes strongly correlated with the presence of type 2 T helper cells. Finally, only 8 genes were highly upregulated and present in the cellular membrane: MILR1, ACE, DCSTAMP, SLAMF8, CD160, IL2RA, ICAM2, and SLAMF6. In summary, we described immune populations associated with genomic alterations with different BC subtypes. We observed a clear presence of inhibitory cells, like Tregs or Th2 when specific chromosomic regions were amplified in basal-like or HER2 and luminal groups. Our data support further evaluation of specific therapeutic strategies in specific BC subtypes, like those targeting Tregs in the basal-like subtype., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/329525
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329525
HANDLE: http://hdl.handle.net/10261/329525
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329525
PMID: http://hdl.handle.net/10261/329525
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329525
Ver en: http://hdl.handle.net/10261/329525
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329525
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329533
Dataset. 2022
TABLE_8_GENOMIC MAPPING OF COPY NUMBER VARIATIONS INFLUENCING IMMUNE RESPONSE IN BREAST CANCER.XLSX [DATASET]
- López-Cade, Igor
- García-Barberán, Vanesa
- Cabañas, Esther
- Díaz-Tejeiro, Cristina
- Saiz-Ladera, Cristina
- Sanvicente, Adrián
- Pérez-Segura, Pedro
- Pandiella, Atanasio
- Győrffy, Balázs
- Ocaña, Alberto
Identification of genomic alterations that influence the immune response within the tumor microenvironment is mandatory in order to identify druggable vulnerabilities. In this article, by interrogating public genomic datasets we describe copy number variations (CNV) present in breast cancer (BC) tumors and corresponding subtypes, associated with different immune populations. We identified regulatory T-cells associated with the Basal-like subtype, and type 2 T-helper cells with HER2 positive and the luminal subtype. Using gene set enrichment analysis (GSEA) for the Type 2 T-helper cells, the most relevant processes included the ERBB2 signaling pathway and the Fibroblast Growth Factor Receptor (FGFR) signaling pathway, and for CD8+ T-cells, cellular response to growth hormone stimulus or the JAK-STAT signaling pathway. Amplification of ERBB2, GRB2, GRB7, and FGF receptor genes strongly correlated with the presence of type 2 T helper cells. Finally, only 8 genes were highly upregulated and present in the cellular membrane: MILR1, ACE, DCSTAMP, SLAMF8, CD160, IL2RA, ICAM2, and SLAMF6. In summary, we described immune populations associated with genomic alterations with different BC subtypes. We observed a clear presence of inhibitory cells, like Tregs or Th2 when specific chromosomic regions were amplified in basal-like or HER2 and luminal groups. Our data support further evaluation of specific therapeutic strategies in specific BC subtypes, like those targeting Tregs in the basal-like subtype., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/329533
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329533
HANDLE: http://hdl.handle.net/10261/329533
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329533
PMID: http://hdl.handle.net/10261/329533
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329533
Ver en: http://hdl.handle.net/10261/329533
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329533
Buscador avanzado