Resultados totales (Incluyendo duplicados): 34303
Encontrada(s) 3431 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330216
Dataset. 2022

SUPPORTING INFORMATION HAZARD ASSESSMENT OF ABRADED THERMOPLASTIC COMPOSITES REINFORCED WITH REDUCED GRAPHENE OXIDE

  • Chortarea, Savvina
  • Kuru, Ogul Can
  • Netkueakul, Woranan
  • Pelin, Marco
  • Keshavan, Sandeep
  • Song, Zhengmei
  • Ma, Baojin
  • Gómes, Julio
  • Villaro Abalos, Elvira
  • Visani de Luna, Luis Augusto
  • Loret, Thomas
  • Fordham, Alexander
  • Drummond, Matthew
  • Kontis, Nikolaos
  • Anagnostopoulos, George
  • Paterakis, George
  • Cataldi, Pietro
  • Tubaro, Aurelia
  • Galiotis, Costas
  • Kinloch, Ian
  • Fadeel, Bengt
  • Bussy, Cyrill
  • Kostarelos, Kostas
  • Buerki-Thurnherr, Tina
  • Prato, Maurizio
  • Bianco, Alberto
  • Wick, Peter
13 pages. -- SI Figure 1: Characterization of rGO. (a) Raman spectra and (b) FTIR patterns of rGO. functionalized-rGO (green), rGO (red) and GO (black). -- SI Figure 2: Characterization of functionalized rGO.(a) XPS spectra of the functionalized rGO. Deconvolution of (b) C1s and (c) O1s.-- SI Figure 3: TGA of functionalized rGO. -- SI Figure 4: TEM micrographs of rGO after the APTES functionalization. -- SI Figure 5: Physicochemical characterization of rGO and abraded composite materials. (a) AFM images of rGO and PA6-rGO . Lateral dimension and thickness distribution analysis for rGO and PA6-rGO. (b) Optical microscopy images of rGO, PA6-rGO and PA6. -- SI Figure 6: (a) EPR spectra of the powder of PA6, rGO and PA6-rGO at room temperature. (b)Assessment of ROS. Fluorescent spectra of PA6, rGO and PA6-rGO in 0.1 % BSA at 40 µg/mL in the presence of DHR123. Fenton reaction (Fe2+ + H2O2) corresponds to the positive control. -- EPR analysis of PA6, rGO and PA6-rGO. -- Fluorescence analysis of PA6, rGO and PA6-rGO. -- SI Figure 7: Particle size distributions of abraded (a) PA6-rGO and (b) PA6 particles in the nanometer range (13–573 nm) measured, measured by SMPS. The results show mean ± SD from at least three-independent measurements. -- SI Figure 8: TNF-α Expression Test (TET) for endotoxin detection in HMDMs exposed to PA6, PA6-rGO, and rGO (20 𝜇g/mL) or to bacterial LPS (0.01 µg/mL) in the presence or absence of the specific LPS inhibitor, polymyxin B (Poly-B; 10 µM) for 24h. . * indicates statistical significance compared to the negative control in absence of Poly-B (p < 0.05). # shows a statistically significant response (p < 0.05) in presence of Poly-B. -- SI Figure 9: (a) SEM images of the crack surface of the freeze-fractured samples of neat PA6 and PA6-rGO composite. Red line and red arrows indicate pulled-out rGOs. (b) TEM image of the abraded particles from the PA6-rGO composite showing the protruding rGOs from PA6 matrix marked with a dashed line. Layered structure of rGO can be observed at higher magnification. -- SI Figure 10: Pro-inflammatory response of A549 epithelial cells after treatment with the inflammogenic material DQ (100 µg/mL). (a) IL-6 and (b) IL-8 release measured after 24 h. Results are shown as mean ± standard error of the mean (SEM) from three independent experiments. * indicates statistical significance compared to the negative control at 24 h of exposure (p < 0.05). -- SI Figure 10: Pro-inflammatory response of A549 epithelial cells after treatment with the inflammogenic material DQ (100 µg/mL). (a) IL-6 and (b) IL-8 release measured after 24 h. Results are shown as mean ± standard error of the mean (SEM) from three independent experiments. * indicates statistical significance compared to the negative control at 24 h of exposure (p < 0.05). -- SI Figure 12: (a) Cytokine release by THP-1 macrophages. IFN-γ, TNF-α and IL-1β levels were determined after incubation with 20 µg/mL of PA6, PA6-rGO and rGO. Data are the mean ± SEM of 3 independent experiments. The * symbol represents p<0.05 as compared to the negative control. (b) THP-1 cells incubated with rGO (20 µg/mL) in the presence or absence of the pan-caspase inhibitor, zVAD-fmk (20 µM) or the NLRP3 inhibitor MCC950 (10 µM). * = p < 0.05, ** = p < 0.01, *** = p < 0.001. -- SI Figure 13: Cell morphology of RAW 264.7 macrophages exposed to different concentrations of rGO and abraded PA6 and PA6-rGO composites after 24 h. Scale bar: 50 μm. -- SI Figure 14: Cytokine profiling and hierarchical cluster analysis of inflammatory mediators released in differentiated HL-60 neutrophils exposed to rGO, abraded PA6-rGO and PA6. -- SI Figure 15: Interference assessment of the abraded particles (PA6 and PA6-rGO) and rGO with the MTS assay. -- SI Figure 16: : TNF-α and IL-6 measurements in the Bronchoalveolar lavage fluids., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330216
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330216
HANDLE: http://hdl.handle.net/10261/330216
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330216
PMID: http://hdl.handle.net/10261/330216
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330216
Ver en: http://hdl.handle.net/10261/330216
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330216

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330222
Dataset. 2023

ULTRAPURE GREEN HIGH PHOTOLUMINESCENCE QUANTUM YIELD FROM FAPBBR3 NANOCRYSTALS EMBEDDED IN TRANSPARENT POROUS FILMS [DATASET]

  • Romero-Pérez, Carlos
  • Fernández-Delgado, Natalia
  • Herrera Collado, Miriam
  • Calvo, Mauricio E.
  • Míguez, Hernán
Achieving highly transparent and emissive films based on perovskite quantum dots (PQD) is a challenging task, since their photoluminescence quantum yield (PLQY) typically drops abruptly when they are used as building blocks to make a solid. In this work, we obtain highly transparent films containing FAPbBr3 quantum dots that display a narrow green emission (wavelength=530nm, FWHM=23nm) with a PLQY as high as 86%. The method employed makes use of porous matrices that act as arrays of nanoreactors to synthesize the targeted quantum dots within their void space, providing both a means to keep them dispersed and a protective environment. Further infiltration with poly(methyl methacrylate) (PMMA) increases the mechanical and chemical stability of the ensemble and serves to passivate surface defects, boosting the emission of the embedded PQD and significantly reducing the width of the emission peak, which fulfills the requirements established by the Commission Internationale de l'Éclairage (CIE) to be considered an ultrapure green emitter. The versatility of this approach is demonstrated by fabricating a color converting layer than can be easily transferred onto a light emitting device surface to modify the spectral properties of the outgoing radiation., Financial support of the Spanish Ministry of Science and Innovation under grant PID2020-116593RB-I00, funded by MCIN/AEI/10.13039/501100011033, and of the Junta de Andalucía under grant P18-RT-2291 (FEDER/UE) is gratefully acknowledged. Also, N.F.D. acknowledges co-funding by European Social Fund and Junta de Andalucía for PAIDI2020 (DOC_01244), figure_1 F1c.txt Figure_2 F2b.txt F2c.txt Figure_3 F3a.txt F3b.txt F3c.txt Figure_4 F4a.txt F4b.txt F4c.txt Figure_5 F5a.txt F5b.txt F5c.txt F5d.txt, Peer reviewed

DOI: http://hdl.handle.net/10261/330222
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330222
HANDLE: http://hdl.handle.net/10261/330222
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330222
PMID: http://hdl.handle.net/10261/330222
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330222
Ver en: http://hdl.handle.net/10261/330222
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330222

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330224
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. SCI., DOI: 10.1002/ADVS.202104559 INNATE BUT NOT ADAPTIVE IMMUNITY REGULATES LUNG RECOVERY FROM CHRONIC EXPOSURE TO GRAPHENE OXIDE NANOSHEETS

  • Loret, Thomas
  • Visani de Luna, Luis Augusto
  • Fordham, Alexander
  • Arshad, Atta
  • Barr, Katharine
  • Lozano, Neus
  • Kostarelos, Kostas
  • Bussy, Cyrill
22 pages. -- Table S1. Summary of the physicochemical characterization of USGO and LGO sheets. -- Table S2. Histopathology analysis for transient immune structures in lungs. -- Table S3. Histopathology analysis for morphological changes in lungs. -- Table S4. List of antibodies used for flow cytometry. -- Table S5. List of PCR primers. -- Figure S1. Influx of immune cells in the alveolar space. -- Figure S2. Cells phenotyping strategy, total cells, immune cells and granulocytes number in the whole lung. -- Figure S3. Levels of inflammatory mediators linked to innate immunity. -- Figure S4. Macrophages and monocytes populations in the whole lung. -- Figure S5. Histopathological analysis of lungs. -- Figure S6. Lymphocyte populations in the whole lung. -- Figure S7. Levels of inflammatory mediators associated to the adaptive immunity in lungs. -- Figure S8. Dendritic cells populations in the whole lung. -- Figure S9. Gene expression of oxidative stress markers in lungs. -- Figure S10. Gene expression of tissue remodelling markers in lungs. -- Figure S11. Gene expression of apoptosis markers in lungs. -- Figure S12. Endotoxin level evaluated in BMDMs. -- Figure S13. Gating strategy to phenotype immune cells by flow cytometry. -- Figure S14. Raman spectra of USGO and LGO., The ICN2 is funded by the CERCA programme, Generalitat de Catalunya, and is supported by the Severo Ochoa Centres of Excellence programme by the Spanish Research Agency (AEI, grant no. SEV-2017-0706)., Peer reviewed

DOI: http://hdl.handle.net/10261/330224
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330224
HANDLE: http://hdl.handle.net/10261/330224
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330224
PMID: http://hdl.handle.net/10261/330224
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330224
Ver en: http://hdl.handle.net/10261/330224
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330224

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330225
Dataset. 2022

SUPPLEMENTARY INFORMATION SAW RESONATORS AND FILTERS BASED ON SC0.43AL0.57N ON SINGLE CRYSTAL AND POLYCRYSTALLINE DIAMOND

  • Sinusia Lozano, Miguel
  • Fernández García, Laura
  • López-Romero, David
  • William, Oliver A.
  • Iriarte, Gonzalo F.
Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330225
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330225
HANDLE: http://hdl.handle.net/10261/330225
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330225
PMID: http://hdl.handle.net/10261/330225
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330225
Ver en: http://hdl.handle.net/10261/330225
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330225

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330227
Dataset. 2022

SUPPORTING INFORMATION MOF-DERIVED ULTRATHIN COBALT MOLYBDENUM PHOSPHIDE NANOSHEETS FOR EFFICIENT ELECTROCHEMICAL OVERALL WATER SPLITTING

  • Wang, Xiang
  • Yang, Linlin
  • Xing, Congcong
  • Han, Xu
  • Du, Ruifeng
  • He, Ren
  • Guardia, Pablo
  • Arbiol, Jordi
  • Cabot, Andreu
8 pages. -- Figure S1. SEM images of CoMoP. -- Figure S2. (a) SEM image of Co–Mo MOFs. (b–c) SEM images and (d) EDX spectrum of CoMoP. -- Figure S3. (a) SEM image of Na2MoO4-ZIF-67. (b–c) SEM images and (d) EDX spectrum Mo–CoP. -- Figure S4. (a) SEM image of ZIF-67. (b–c) SEM images and (d) EDX spectrum CoP. -- Figure S5. (a–d) TEM image of CoMoP. -- Figure S6. (a–d) HAADF-STEM micrographs of CoMoP. -- Figure S7. EELS chemical composition maps obtained from the red squared area of the STEM mi-crograph. Individual Co L2,3-edges at 779 eV (red), Mo M4,5-edges at 230 eV (green), P L2,3-edges at 132 eV (blue), N K-edge at 401 eV (pink) and C K-edge at 284 eV (orange). -- Figure S8. (a) OER and (b) HER polarization curves of CoMoP with different Mo content in 1.0 M KOH. -- Figure S9. Cyclic voltammograms for (a) CoMoP; (b) Mo–CoP; (c) CoP and (d) RuO2 in the non-faradaic region of 1.12–1.22 V vs. RHE at various scan rates. -- Figure S10. (a–c) SEM image and d) EDX spectrum of CoMoP after long term OER stability test-ing. -- Figure S11. (a–c) SEM image and d) EDX spectrum of CoMoP after long term HER stability test-ing. -- Table S1. Comparison of OER performance of CoMoP with some previously reported CoP-based catalysts in 1.0 M KOH solution. -- Table S2. Comparison of HER performance of CoMoP with some previously reported CoP-based catalysts in 1.0 M KOH solution. -- Table S3. Comparison of OWS performance of CoMoP with some previously reported CoP-based catalysts in 1.0 M KOH solution., ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/330227
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330227
HANDLE: http://hdl.handle.net/10261/330227
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330227
PMID: http://hdl.handle.net/10261/330227
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330227
Ver en: http://hdl.handle.net/10261/330227
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330227

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330231
Dataset. 2022

SUPPLEMENTARY MATERIAL OF THE ARTICLE MOLECULAR ENGINEERING TO INTRODUCE CARBONYL BETWEEN NICKEL SALOPHEN ACTIVE SITES TO ENHANCE ELECTROCHEMICAL CO2 REDUCTION TO METHANOL

  • Liang, Zhifu
  • Wang, Jianghao
  • Tang, Peng-Yi
  • Tang, Weiqiang
  • Liu, Lijia
  • Shakouri, Mohsen
  • Wang, Xiang
  • Llorca, Jordi
  • Zhao, Shuangliang
  • Heggen, Marc
  • Dunin-Borkowski, Rafal E.
  • Cabot, Andreu
  • Wu, Hao Bin
  • Arbiol, Jordi
19 pages. -- Figure S1. Synthesis scheme of Ni-2D-SA. -- Figure S2. PXRD patterns of Ni-2D-SA (black) and Ni-2D-O-SA (red). -- Figure S3. FT-IR spectra of Ni-2D-SA and Ni-2D-O-SA. -- Figure S4. chemical shift of 13C SSNMR spectra of Ni-2D-SA and Ni-2D-O-SA. -- Figure S5 SEM images of: (a) Ni-2D-O-SA, (b) Ni-2D-O-SA-CNT, (c) Ni-2D-SA-CNT. -- Figure S6. (a)-(c) HAADF-STEM images of Ni-2D-O-SA displaying the presence of atomically dispersed nickel atoms. (d) HAADF-STEM image and EDS mapping. -- Figure S7. Fourier transformed Ni K-edge EXAFS spectra of Ni-SA plotted in R-space, Fourier transformed EXAFS spectra in R-space of Ni-SA and fitted curve. -- Table S1. The Ni K-edge EXAFS fitting parameters of Ni-SA. R:bond length, CN: coordination number. -- Figure S8. Fourier transformed Ni K-edge EXAFS spectra of Ni-2D-SA plotted in R-space, Fourier transformed EXAFS spectra in R-space of Ni-SA and fitted curve. -- Table S2. The Ni K-edge EXAFS fitting parameters of Ni-2D-SA. -- Table S3. The Ni K-edge EXAFS fitting parameters of Ni-2D-O-SA. -- Figure S9. Fourier transformed Ni K-edge EXAFS spectra of Ni-2D-O-SA after immersed in KHCO3 for three days plotted in R-space, Fourier transformed EXAFS spectra in R-space of Ni-SA and fitted curve. -- Table S4. The Ni K-edge EXAFS fitting parameters of Ni-2D-O-SA-KHCO3. -- Figure S10. Pore size distribution of Ni-2D-SA and Ni-2D-O-SA powder, respectively. -- Figure S11. PXRD of Ni-2D-SA-CNT, Ni-2D-O-SA-CNT and CNT. -- Figure S12. HAADF-STEM image and EDS elemental mapping for Ni-2D-O-SA-CNT. -- Figure S13. Left panel: i-t curve on Ni-2D-O-SA-CNT at -0.9 V vs. RHE for 1h Right panel: Calibration curves for methanol (0.2 mM DMSO as internal standard). -- Figure S14. NMR spectrum of the catholyte after 1 hour of CO2 reduction on Ni-2D-O-SA-CNT. -- Figure S15. (a and b) Current densities of CO2RR for Ni-2D-O-SA-CNT and Ni-2D-SA-CNT at various potentials. (c and d) Product distribution of CO2RR for Ni-2D-O-SA-CNT and Ni-2D-SA-CNT at various potentials. -- Figure S16. (a,c) CV curves on Ni-2D-O-SA-CNT and Ni-2D-SA-CNT with different scan rates (5, 10, 20, 50, 100 mV s-1). (b, d) Current at open circuit potential (OCP) versus scan rates of different samples. The electrode area is 1 cm-2. -- Figure S17. Product distribution for Ni-2D-O-SA-CNT under Ar-saturated 0.1 M KHCO3 electrolyte at various potentials. -- Figure S18. NMR spectrum of the catholyte after 1 hour of CO2 reduction on Ni-2D-O-SA-CNT. -- Figure S19. NMR spectrum of the catholyte after 1 hour of electro-reduction under Ar environment on Ni-2D-O-SA-CNT. -- Figure S21. XPS spectra of Ni-2D-O-SA-CNT on carbon paper before and after 1 and 5 hours of CO2RR test. -- Figure S22. Product distribution of CO2RR for 2D-O-SA-CNT (without nickel) at various potential. -- Figure S23. Free-energy profiles of hydrogen evolution reaction (HER) on selected segments of Ni-2D-SA and Ni-2D-O-SA, respectively. -- Figure S24. The adsorption energy for intermediates (from CO to methanol) on selected segments of Ni-2D-SA and Ni-2D-O-SA, respectively. -- Figure S25. Free energy diagram of CO2 to CH3OH on selected segments of Ni-2D-O-SA. -- Table S5. Performance comparison of our catalysts and previous reported molecular based electrocatalysts for conversion of CO2 to methanol., ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/330231
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330231
HANDLE: http://hdl.handle.net/10261/330231
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330231
PMID: http://hdl.handle.net/10261/330231
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330231
Ver en: http://hdl.handle.net/10261/330231
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330231

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330234
Dataset. 2022

SUPPLEMENTARY INFORMATION FOR GLOBAL PREDICTIONS FOR THE RISK OF ESTABLISHMENT OF PIERCE’S DISEASE OF GRAPEVINES

  • Giménez-Romero, Alex
  • Galván Fraile, Javier
  • Montesinos, Marina
  • Bauzà, Joan
  • Godefroid, Martin
  • Fereres, Alberto
  • Ramasco, José J.
  • Matías, Manuel A.
  • Moralejo, Eduardo
This PDF file includes: Supplementary text, Figures S1 to S13, Tables S1 to S9 and SI References., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330234
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330234
HANDLE: http://hdl.handle.net/10261/330234
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330234
PMID: http://hdl.handle.net/10261/330234
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330234
Ver en: http://hdl.handle.net/10261/330234
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330234

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330235
Dataset. 2022

SUPPLEMENTARY MATERIAL OSCILLATORY PATTERNS IN REDOX GRADIENT MATERIALS THROUGH WIRELESS BIPOLAR ELECTROCHEMISTRY. THE DYNAMIC WAVE-LIKE CASE OF COPPER BIPOLAR OXIDATION

  • Fuentes-Rodríguez, L.
  • Pujades, Estanislao
  • Fraxedas, J.
  • Crespi, Anna
  • Xu, K.
  • Abad, Llibertat
  • Casañ-Pastor, N.
6 pages. -- Figure S1. Survey XPS spectra of regions Z1, Z2', Z4', Z5, Z6 and Z8 and of an atomically clean Cu(111) single crystal surface reference. -- Figure S2. High-resolution XPS spectra corresponding to the (a) C1s and (b) O1s core levels of regions Z1, Z2', Z4', Z5, Z6 and Z8. -- Fig S3. General diffraction pattern extracted from bidimensional detector for each zone labelled in inset picture. -- Figure S4. Finite element mapping in COMSOL main cell configuration according to the two mesh sizes described in Table S1. -- Table S1. Comsol parameters used in calculations., ICN2 is funded by the CERCA program/Generalitat de Catalunya., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330235
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330235
HANDLE: http://hdl.handle.net/10261/330235
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330235
PMID: http://hdl.handle.net/10261/330235
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330235
Ver en: http://hdl.handle.net/10261/330235
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330235

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330236
Dataset. 2022

DESCRIPTION OF ADDITIONAL SUPPLEMENTARY FILES: GLOBAL PREDICTIONS FOR THE RISK OF ESTABLISHMENT OF PIERCE'S DISEASE OF GRAPEVINES

  • Giménez-Romero, Alex
  • Galván Fraile, Javier
  • Montesinos, Marina
  • Bauzà, Joan
  • Godefroid, Martin
  • Fereres, Alberto
  • Ramasco, José J.
  • Matías, Manuel A.
  • Moralejo, Eduardo
Supplementary Data 1- Results of the inoculation assays on European grapevine varieties with two isolates of Xylella fastidiosa subsp. fastidiosa (ST1) carried out in Mallorca between 2018 and 2020., Supplementary Data 2- Distribution of Pierce's disease in the United States. Data was obtained from different publications in which at least information of the county was provided., Supplementary Data 3- Pierce's disease risk of establishment in winegrowing regions of China and the Southern Hemisphere., Supplementary Data 4- Pierce's disease risk areas in European vineyards given by the intersection of Corine-Land-Cover and the projected model in the ERA5-land data under a Ro=5 scenario and a spatial heterogeneous vector distribution for 2019 and projection for 2050., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330236
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330236
HANDLE: http://hdl.handle.net/10261/330236
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330236
PMID: http://hdl.handle.net/10261/330236
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330236
Ver en: http://hdl.handle.net/10261/330236
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330236

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330251
Dataset. 2022

SUPPLEMENTARY MATERIAL PHARMACOKINETICS OF PEGYLATED GOLD NANOPARTICLES: IN VITRO—IN VIVO CORRELATION

  • Dubaj, Tibor
  • Kozics, Katarina
  • Sramkova, Monika
  • Manova, Alena
  • Bastús, Neus G.
  • Moriones, Oscar Hernando
  • Kohl, Yvonne
  • Dusinska, María
  • Rundén-Pran, Elise
  • Puntes, Víctor F.
  • Nelson, Andrew
  • Gabelova, Alena
  • Simon, Peter
6 pages. -- PDF file includes: 1. Materials and methods: 1.1. 1.1 Chemicals; 1.2 Physicochemical Characterization; 1.3 Synthesis of the PEGylated gold nanoparticles (AuNPs). -- 2. Results: 2.1 Characterization of the PEGylated gold nanoparticles (PEG-AuNPs); 2.2 Transmission Electron Microscopy (TEM); 2.3 UV/Vis Spectroscopy; 2.4 Dynamic Light Scattering (DLS), d (nm), Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330251
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330251
HANDLE: http://hdl.handle.net/10261/330251
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330251
PMID: http://hdl.handle.net/10261/330251
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330251
Ver en: http://hdl.handle.net/10261/330251
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330251

Buscador avanzado