Resultados totales (Incluyendo duplicados): 34303
Encontrada(s) 3431 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333816
Dataset. 2023

SUPPLEMENTARY MATERIAL FOR TECTOMER-MEDIATED OPTICAL NANOSENSORS FOR TYRAMINE DETERMINATION

  • Domínguez, Mario
  • Oliver, Sofía
  • Garriga, Rosa
  • Muñoz, Edgar
  • Cebolla, Vicente L.
  • de Marcos, Susana
  • Galbán, Javier
Under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/)., Section S1: Quantification of Au(III) immobilized in tectomer by means of AuBr4− complex formation. (Table S1: Effect of the pH on AuBr4− complex formation. Figure S1: (a) Absorption spectra of AuBr4−; (b) Absorption spectra upon addition of KBr to a solution containing Au(III)/tectomer complex at pH 6.0 and 7.0; (c) Plot representing Au(III) concentration in the supernatant resulting from the addition of KBr in pH 2.0 buffer to Au(III)/tectomer layers on PLA supports. Table S2: Au(III) concentration in the supernatant resulting from the addition of KBr in pH 2.0 buffer to the Au(III)/tectomer layers on PLA supports. Table S3: Percentage of Au(III) released from the tectomer into the solution at pH 2.0.). Section S2: Optimization of experimental parameters for tyramine detection using Au(III)/tectomer sensor layers. (Figure S2: R coordinate as a function of the tyramine concentration for Au(III)/tectomer layers prepared using different pH buffers. Figure S3: R coordinate as a function of tyramine concentration for different Au(III)/tectomer molar ratios. Figure S4: Au(III)/tectomer sensing layer response to several tyramine concentrations at different pH values. Figure S5: R coordinate as a function of the pH of the buffers used to dissolve tyramine. [Tyramine] = 10 µM in all cases.). Section S3: Extraction method for the cheese samples., This work is part of the I+D+i project PID2019-105408GB-I00 supported by projects MCIN/AEI/10.13039/501100011033 and PDC2021-121224-100, and the funding to research groups of the DGA, Spain (E25_20R)., Peer reviewed

DOI: http://hdl.handle.net/10261/333816
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333816
HANDLE: http://hdl.handle.net/10261/333816
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333816
PMID: http://hdl.handle.net/10261/333816
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333816
Ver en: http://hdl.handle.net/10261/333816
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333816

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333853
Dataset. 2023

APPENDIX A. SUPPLEMENTARY MATERIAL FOR UNDERSTANDING THE STRUCTURAL CHANGES ON FE2O3/AL2O3 OXYGEN CARRIERS UNDER CHEMICAL LOOPING GASIFICATION CONDITIONS

  • Samprón, Iván
  • García Labiano, Francisco
  • Izquierdo Pantoja, María Teresa
  • de Diego Poza, Luis Francisco
Under a Creative Commons license CC-BY-NC-ND 4.0, 1- Pictures of the platinum basket with fresh and used oxygen carrier particles at different solid conversion ΔXs, temperature, Fe2O3-content, and number of redox cycles. Figure S1. View of the samples after 300 redox cycles in TGA at different operating conditions. Figure S2. View of the samples as a function of the number of redox cycles. 2. SEM pictures and EDX analyses of Fe presence on different points of Fe20Al particles reacted at three solid conversions ΔXs. Figure S3. Fe content determined by EDX on Fe20Al particles after 300 redox cycles for different ΔXs. T=950 ºC, This work was supported by the CO2SPLIT Project, Grant PID2020-113131RB-I00, funded by MICIN/AEI/10.13039/501100011033. I. Samprón thanks the Spanish Ministerio de Ciencia, Innovación y Universidades (MICIU) for the PRE2018-086217 predoctoral fellowship., Peer reviewed

DOI: http://hdl.handle.net/10261/333853
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333853
HANDLE: http://hdl.handle.net/10261/333853
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333853
PMID: http://hdl.handle.net/10261/333853
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333853
Ver en: http://hdl.handle.net/10261/333853
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333853

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333859
Dataset. 2022

APPENDIX A. SUPPLEMENTARY DATA FOR STABILITY OF A PYRIMIDINE-BASED DYE-SENSITIZED TIO2 PHOTOANODE IN SACRIFICIAL ELECTROLYTES

  • Ansón Casaos, Alejandro
  • Martínez-Barón, Carlos
  • Angoy, Sergio
  • Hernández-Ferrer, Javier
  • Benito, Ana M.
  • Maser, Wolfgang K.
  • Blesa, María Jesús
General methods: Melting points were obtained on a Gallenkamp apparatus in open capillaries and are uncorrected. 1H and 13C-NMR spectra were recorded on a Bruker AV400 at 400 MHz and 100 MHz respectively; δ values are given in ppm (relative to TMS) and J values in Hz. The apparent resonance multiplicity is described as s (singlet), br s (broad singlet), d (doublet), t (triplet), q (quartet) and m (multiplet).1H-1H COSY and 1H-13C-HSQC experiments were recorded in order to establish peaks assignment. Electrospray mass spectra were recorded on a Bruker MicroToF-Q spectrometer and on a Bruker TIMS-TOF; accurate mass measurements were achieved using sodium formate as external reference. UV-Visible spectroscopy was performed with an UV-vis Cary 6000. Also, the quantity of dye adsorbed on the TiO2 anode was estimated by desorption experiments; the desorption solution of was 10-3 M NaOH in H2O/THF (20:80). Cyclic Voltammetry (CV) measurements were performed with a μ-Autolab ECO-Chemie potenciostat, using a glassy carbon working electrode, Pt counter electrode, and Ag/AgCl reference electrode. The experiments were carried out under argon, in CH2Cl2 with Bu4NPF6 as supporting electrolyte (0.1mol L-1). Scan rate was 100 mV s-1.-- Synthetic details: The aldehyde AT-CHO [1] (80 mg, 0.346 mmol), 4-methylpyrimidine (32 μL, 0.346 mmol) and Aliquat 336 (16 μL, 0.035 mmol) was refluxed in 5.2 mL NaOH (5M). The mixture was maintained during 1h, then was cooled and the precipitate was filtered off and washed with water. The aqueous phase was extracted with CH2Cl2 (3x20 mL). The organic phase was dried with MgSO4 and the solvent was removed under reduced pressure. The crude product was purified by flash chromatography increasing the polarity of the eluent hexane/ethyl acetate from 8:2 to 6:4 to obtain the desired product, an orange solid (51 mg, 48%). Molecular weight (g/mol): 307.41 Melting point at 760 mm Hg (˚C): 227.7 IR (KBr) ν (cm-1): 1571 (C=N) Uv-Vis data λmax (CH2Cl2)/nm 428 (ε/mol-1·dm3·cm-1 1.98 ± 0.02·104) 1H-NMR (CDCl3, 400 MHz) δ (ppm): 3.01 (s, 6H), 6.72 (d, J= 8Hz, 2H), 6.75 (d, J=16Hz, 1H), 7.11 (d, J = 4 Hz, 1H), 7.14-7.23 (bs, 2H), 7.51 (d, J = 8 Hz, 2H), 7.99 (d, J = 16 Hz, 1H), 8.62 (bs, 1H), 9.11 (s, 1H) 13C-NMR (CDCl3 , 100 MHz) δ (ppm): 40.5, 112.5, 118.5, 121.5, 123.0, 127.1, 130.8, 131.8, 138.4, 147.7, 150.1, 156.8, 158.5, 162.4. HRMS (ESI)+: Found [M+H]+ 308.1215; molecular formula C18H17N3S requires [M+H]+ 308.1216.-- Under a Creative Commons license CC-BY-NC-ND 4.0, 1. General methods 2. Synthetic details 3. Absorption spectra a. Figure S.1. UV-Vis Absorption spectra in CH2Cl2 and concentration dependence of AT-Pyri dye 4. Electrochemical characterization a. Figure S.2. CV analysis of AT-Pyri in CH2Cl2 b. Table S.1. Optical parameters, transition energy E0-0 and potential values Eox and Eox* 5. NMR spectra 6. References, Financial support from Spanish MICINN/AEI under projects PID2019-104272RB-C51/AEI/10.13039/501100011033 and PID2019-104307GB-I00/AEI/10.13039/501100011033, and the Diputación General de Aragón-European Social Found under projects T03-20R and E47-20R is acknowledged., Peer reviewed

DOI: http://hdl.handle.net/10261/333859
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333859
HANDLE: http://hdl.handle.net/10261/333859
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333859
PMID: http://hdl.handle.net/10261/333859
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333859
Ver en: http://hdl.handle.net/10261/333859
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333859

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333879
Dataset. 2023

SUPPLEMENTARY MATERIALS VALIDATION OF RAPID AND ECONOMIC COLORIMETRIC NANOPARTICLE ASSAY FOR SARS-COV-2 RNA DETECTION IN SALIVA AND NASOPHARYNGEAL SWABS

  • Armesto, María
  • Charconnet, Mathias
  • Marimón, José M.
  • Lía Fernández Regueiro, Cristina
  • Jia, Jia
  • Yan, Tingdong
  • Sorarrain, Ane
  • Grzelczak, Marek
  • Sanromán Iglesias, María
  • Vicente, Mónica
  • Klempa, Boris
  • Zubiria, Javier
  • Peng, Yuan
  • Zhang, Lei
  • Zhang, Jianhua
  • Lawrie, Charles H.
All data associated with this study are available in Supplementary Materials., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/333879
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333879
HANDLE: http://hdl.handle.net/10261/333879
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333879
PMID: http://hdl.handle.net/10261/333879
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333879
Ver en: http://hdl.handle.net/10261/333879
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333879

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333900
Dataset. 2023

SUPPLEMENTARY MATERIALS FOR THERMOELECTRIC PROPERTIES OF COTTON FABRICS DIP-COATED IN PYROLYTICALLY STRIPPED PYROGRAF® III CARBON NANOFIBER BASED AQUEOUS INKS

  • Paleo, A. J.
  • Krause, Beate
  • Cerqueira, M. Fátima
  • González Domínguez, José Miguel
  • Muñoz Tavera, Enrique
  • Pötschke, Petra
  • Rocha, Ana M.
Under the terms and conditions of the Creative Commons Attribution (CC BY) license 4.0, 3.2. Raman analysis of as‐received CNFs and dip‐coated textiles: Figure S1. Example of the deconvolutions performed for parameters shown in Table 1. 3.3. XPS analysis of as‐received CNFs and dip‐coated textiles: Figure S2. XPS survey spectra for CNFs (left) and the CWF@1.6CNF thermoelectric textile (right).Table S1. XPS quantitative information extracted from the survey spectra displayed in Figure S1., Antonio J. Paleo gratefully acknowledges support from the FCT-Foundation for Science and Technology by the “plurianual” 2020–2023 Project UIDB/00264/2020, and European COST Action EsSENce CA19118 for its support with the Short-Term Scientific Mission (STSM) at IPF (Dresden). E. Muñoz acknowledges support from Fondecyt grant number 1230440 and from ANID PIA Anillo ACT/192023., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/333900
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333900
HANDLE: http://hdl.handle.net/10261/333900
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333900
PMID: http://hdl.handle.net/10261/333900
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333900
Ver en: http://hdl.handle.net/10261/333900
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333900

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333903
Dataset. 2023

DATA FROM: EXPLORING BACTERIAL CELL-FREE SUPERNATANTS, UNFILTERED FERMENTS AND CRUDE BACTERIA USES OF XENORHABDUS AND PHOTORHABDUS (MORGANELLACEAE) FOR CONTROLLING BOTRYTIS CINEREA (HELOTIALES: SCLEROTINIACEAE)

  • Vicente-Díez, Ignacio
  • Carpentero, Elisabeth
  • Pou, Alicia
  • Campos-Herrera, Raquel
Statistical data described in the article and the solfware SPSS and the charts with Prism Graphpad 8.0 (Prism). Repetition of all the experiments (two times eachs), check of the controls, assurance of good and reproducible conditions., Experiment performed in the lab, following details described in the publication: https://doi.org/10.1016/j.biocontrol.2023.105259; http://hdl.handle.net/10261/333898, Ministry of Science and Innovation, grant PID2019-104112RB I00 (MCIN/AEI/10.13039/50110001103). The predoctoral contract FPI-UR 2021 (University of La Rioja) support IVD The Erasmus+ - KA1 Erasmus Mundus Joint Master Degrees Program of the European Commission under the PLANT HEALTH Project supported EC., Peer reviewed

DOI: http://hdl.handle.net/10261/333903
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333903
HANDLE: http://hdl.handle.net/10261/333903
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333903
PMID: http://hdl.handle.net/10261/333903
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333903
Ver en: http://hdl.handle.net/10261/333903
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333903

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333908
Dataset. 2022

APPENDIX. SUPPLEMENTARY MATERIALS FOR RELEVANCE OF HEAT CONDUCTION IN THE CORRECTION AND INTERPRETATION OF HIGH TEMPERATURE, FINE WIRE THERMOCOUPLE MEASUREMENTS

  • Jiménez, Santiago
Under a Creative Commons license CC-BY 4.0, S1. S-Type thermocouples with roughly equal fine wire diameter (75 µm in the left-most, 70 µm in the others) and different bead sizes, as seen with a binocular microscope (~40x)., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/333908
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333908
HANDLE: http://hdl.handle.net/10261/333908
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333908
PMID: http://hdl.handle.net/10261/333908
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333908
Ver en: http://hdl.handle.net/10261/333908
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333908

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333914
Dataset. 2023

SUPPORTING INFORMATION: A SITE-SELECTIVE FLUORESCENCE SPECTROSCOPY STUDY OF THE CRYSTAL PHASES OF KY3F10: LEVERAGING THE OPTICAL RESPONSE OF EU3+ IONS

  • Serna-Gallén, Pablo
  • Beltrán-Mir, Héctor
  • Cordoncillo, Eloísa
  • Balda, Rolindes
  • Fernández, Joaquín
S1. Rietveld Refinement: The experimental powder X-ray diffraction pattern of sample 1DA was refined using the Rietveld method by means of GSAS software. A Pseudo-Voight function was used to simulate the peak shape and the log-interpolate function with ten coefficients was used to simulate the background. The Rietveld refinement graphic is depicted in Figure S1, while the refined parameters (including the percentage of phase fraction) are included in Table S1 and Table S2., S2. Structural Characterization: Figure S2 shows the FT-IR spectra of samples 1D (δ), 1DA (δ + α), and 1A (α) as an example of the different crystal phases. The broad, weak bands at ≈ 3100–3500 cm–1 and ≈ 1640 cm–1 are assigned to the O–H stretching vibrations and H–O–H bending mode of H2O molecules, respectively. This indicates the presence of some absorbed water in the materials. In sample 1D, a notable difference is appreciated in the stretching and bending vibrational modes of H2O molecules, since they are associated with crystalline water molecules localized in the channels of the δ-KY3F10·xH2O host lattice. These bands are sharper and stronger. For all the samples, the Y–F host lattice vibrations were observed below 600 cm–1 . On the other hand, the FT-IR spectrum of sample 1DA can be interpreted as a combination of the spectra of samples 1D and 1A, which is very good agreement with the results of XRD and the coexistence of δ and α crystal phases in the same sample. It is observed a major response from the response of the α-phase (see indeed the Y–F host lattice vibrations), a fact that suggests that there is a higher amount of this crystal phase., S3. DLS measurements: Figure S3 shows the particle size distribution of samples doped with 1 mol% Eu 3+ content. For the DLS measurements, the powder concentration was 1 mg/mL in distilled water. Sample 1DA (α + δ) was previously filtered using a 0.4 µm cellulose filter to eliminate the agglomerates corresponding to the α-phase. Otherwise, neither a good dispersion nor good data from the DLS measurements could be obtained. The maximum peak for sample 1DA-filtered was found at 195 nm (mainly due to the δ-phase nanospheres), which is quite close to the value obtained for sample 1D (δ-phase), 175 nm. The obtained hydrodynamic diameters were in very good agreement with the SEM results., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/333914
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333914
HANDLE: http://hdl.handle.net/10261/333914
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333914
PMID: http://hdl.handle.net/10261/333914
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333914
Ver en: http://hdl.handle.net/10261/333914
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333914

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333927
Dataset. 2023

SUPPLEMENTARY INFORMATION: COOPER PAIR EXCITATION MEDIATED BY A MOLECULAR QUANTUM SPIN ON A SUPERCONDUCTING PROXIMITIZED GOLD FILM

  • Trivini, Stefano
  • Ortuzar, Jon
  • Vaxevani, Katerina
  • Li, Jingcheng
  • Bergeret, F. S.
  • Cazalilla, M. A.
  • Pascual, José I.
I. Supplementary experimental results Line profile of a strongly coupled FeTPP-Cl 2 Dependence of molecule-surface interaction on tip vertical position Dependence of pair excitation amplitude on the exchange interaction J Spectrum of a FeTPP-Cl in the normal state S2. Theoretical model Single site Superconductor Spin-5/2 impurity with zero exchange coupling Spin-5/2 impurity with finite exchange coupling Full Hamiltonian S3. Phenomenology of the pair excitation, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/333927
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333927
HANDLE: http://hdl.handle.net/10261/333927
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333927
PMID: http://hdl.handle.net/10261/333927
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333927
Ver en: http://hdl.handle.net/10261/333927
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333927

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333933
Dataset. 2023

SUPPORTING INFORMATION: FLAVIN-CONJUGATED PT(IV) ANTICANCER AGENTS

  • Sánchez-Camacho, Juan
  • Infante-Tadeo, Sonia
  • Carrasco, Ana C.
  • Scoditti, Stefano
  • Martínez, Álvaro
  • Barroso-Bujans, Fabienne
  • Sicilia, Emilia
  • Pizarro, Ana M.
  • Salassa, Luca
Experimental section Materials for synthesis and analysis Instrumentation Nuclear magnetic resonance (NMR) spectroscopy Elemental analysis (EA) Mass spectrometry (MS) Gel permeation chromatography (GPC) Experimental details for chemical synthesis Solution studies Stability of Pt-TARF compounds Photoactivation of Pt-TARF compounds Computational details In vitro cell studies Cell culture Exposure to metal and organic compounds Cell viability Statistical analysis Synthesis and characterization Synthesis of the TARF ligand Synthesis of Pt precursors Figures Figure S1-14, Characterization of compounds Figure S15-18, Stability studies Figure S19-27, Activation studies with bioreductants Figure S28, DFT calculations, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/333933
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333933
HANDLE: http://hdl.handle.net/10261/333933
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333933
PMID: http://hdl.handle.net/10261/333933
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333933
Ver en: http://hdl.handle.net/10261/333933
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/333933

Buscador avanzado