Resultados totales (Incluyendo duplicados): 33862
Encontrada(s) 3387 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329942
Dataset. 2022

SUPPORTING INFORMATION A PLUG, PRINT & PLAY INKJET PRINTING AND IMPEDANCE-BASED BIOSENSING TECHNOLOGY OPERATING THROUGH A SMARTPHONE FOR CLINICAL DIAGNOSTICS

  • Rosati, Giulio
  • Urban, Massimo
  • Zhao, Lei
  • Yang, Qiuyue
  • Castro Silva, Cecilia de Carvalho
  • Bonaldo, Stefano
  • Parolo, Claudio
  • Nguyen, Emily P.
  • Ortega, Gabriel
  • Fornasiero, Pablo
  • Paccagnella, Alessandro
  • Merkoçi, Florind
13 pages. -- Table S1. Printer setting used for fabrication of the electrodes. -- Figure S1. Morphological comparison of the lines printed with Epson XP15000 and the standard Dimatix 2800. a, The lines are defined inline if printed along the printhead movement direction, and outline if perpendicular to it. The design consisted of 2 cm long lines with design width between 15 and 300 µm. b, Micrographs and SEM of both the surface and cross-sections of the lines. c, Interferometric data of 400 µm interdigitated line obtained with the Epson printer on Mitsubishi substrate. -- Figure S2. Comparison of the morphological and electrical performances of the Epson and Dimatix printers. Representation of the lines real width with respect to the theoretical one for Dimatix and Epson on Mitsubishi and Novacentrix substrates, for inlines (a), and outlines (b), for which Novacentrix resulted disconnected with Epson. c, Kinetics of stabilization of the lines resistance over time. d, Representation of the stabilized resistances of the lines with respect to the printing width and fitting with the first Ohm’s law. -- Figure S3. Simulation of the electric field uniformity for a simple 2 electrodes layout and optimization of the geometrical parameters. a, Device layout and magnification of the active window exposing the 2 electrodes to the testing solution. b, 3D rectangular cell used for the simulations representing the device electrodes in contact with the testing solution. c,f,i, Mesh structure of the 50 µm, 300 µm, 600 µm layouts (electrodes' length: 2 mm, electrodes' width: 50 µm / 300 µm / 600 µm, electrodes' gap: 200 µm). d,g,j, Electric potential isosurfaces for the 50 µm, 300 µm, and 600 µm layouts. e,h,k, Contour plots of the electric potential on 3 vertical section planes at the two ends of the electrodes and in the middle (indicated respectively with continuous, dashed and dotted lines). -- Figure S4. SEM cross-section of the wax treated devices. a. SEM cross-section of a wax device right after wax first layer printing. The layers visible from the bottom are PET, PVA coating and the first wax layer. b. SEM magnified cross-section of the PVA coating after the melting of the two wax layers printed on the device. No net division between PVA and wax are visible because the latter penetrated and saturated the first one. -- Figure S5. Pictures of the used devices. a. A4 sheet of the inkjet-printed devices after wax passivation and lamination. -- Table S2. Detailed description of the fabrication costs, including the sensors materials and equipment, and the smartphone readout. -- Figure S6. Schematic (a) and picture (b) of the simple electronic circuit to be connected to the smartphone audio jack for the EIS measurements on the biosensor. c. Comparison of the impedance spectra obtained with the portable EIS system and with a standard AutoLab potentiostat. The inset shows the electric scheme of the tested dummy cell. -- Figure S7. Bode diagrams (module left, phase right) of the measurements in PBS (blue circles) and artificial urine (red squares) on this work inkjet printed devices, commercially available MetroOhm silver interdigitated devices and gold screen-printed devices., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329942
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329942
HANDLE: http://hdl.handle.net/10261/329942
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329942
PMID: http://hdl.handle.net/10261/329942
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329942
Ver en: http://hdl.handle.net/10261/329942
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329942

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329943
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. FUNCT. MATER., DOI: 10.1002/ADFM.202112902 ANTIBACTERIAL FILMS BASED ON MOF COMPOSITES THAT RELEASE IODINE PASSIVELY OR UPON TRIGGERING BY NEAR- INFRARED LIGHT

  • Han, Xu
  • Balcerzak, Mateusz
  • Hernando Moriones, Oscar
  • Cano-Sarabia, Mary
  • Cortés, Pilar
  • Bastús, Neus G.
  • Puntes, Víctor F.
  • Llagostera, Montserrat
  • Imaz, Inhar
  • Maspoch, Daniel
18 pages. -- Figure S1. (a) Bright field STEM image of the synthesized AuNRs. (b) Bright field STEM image of the AuNR@SiO2 after the first silica-shell coating. -- Figure S2. (a) STEM micrographs of synthesized AuNR@UiO-66 composite before (left) and after (right) exposure to iodine gas at 75 °C for 3 hours. Note that the AuNRs were etched after having been exposed to the iodine. (b) STEM micrographs of the AuNR@SiO2@UiO-66 composite before (left) and after (right) exposure to iodine at 75 °C for 96 hours, confirming the stability of the silica-coated AuNRs. Scale bar: 500 nm. -- Figure S3. N2-sorption isotherm measurements at 77 K, and corresponding BET plots, for UiO-66 microbeads (a) and AuNR@SiO2@UiO-66 microbeads (b). -- Table S1. Summary of the maximum temperatures reached by each studied material upon irradiation with near-infrared lasers of different intensities. -- Figure S4. (a) Plot of time vs. temperature for AuNR@SiO2@UiO-66 microbeads irradiated for 1 minute with near infrared light at an intensity of 224 mW cm-2. (b) Thermal imaging of the UiO-66 (leftmost) when irradiated at 1000 mW cm-2, and AuNR@SiO2@UiO-66 microbeads when irradiated with an intensity of 52 mW cm-2 (left), 224 mW cm-2 (middle) and 1000 mW cm-2 (right). -- Figure S5. Thermogravimetric analysis curves for pristine UiO-66 microbeads (blue), iodineloaded UiO-66 microbeads (black), and iodine-loaded AuNR@SiO2@UiO-66 microbeads (red). -- Figure S6. (a) PXRD spectra of pristine UiO-66 (black), pristine AuNR@SiO2@UiO-66 (red), UiO-66 after desorption of iodine (blue), and AuNR@SiO2@UiO-66 after desorption of iodine (green). (b) HAADF-STEM micrograph of AuNR@SiO2@UiO-66 after 96-hour exposure to iodine at 75 °C. Scale bar: 100 nm. -- Figure S7. Release of iodine from I2@UiO-66 microbeads (black) and I2@AuNR@SiO2@UiO-66 microbeads (red), without any laser irradiation. Inset: zoomed section of graph. -- Figure S8. FE-SEM micrographs of cross-sections of the composite films containing AuNR@SiO2@UiO-66 microbeads at 0% (a), 8% (b), 25% (c) and 46 (d)% (w/w). -- Figure S9. TGA curves of the iodine-loaded composite films containing AuNR@SiO2@UiO- 66 microbeads at 0% (black), 8% (red), 25% (blue) and 46% (green) (w/w). -- Figure S10. Iodine release over time from the composite films containing AuNR@SiO2@UiO-66 microbeads at 46% (a) and 25% (b) (w/w), without any laser irradiation. -- Figure S11 (a) Stepwise release of iodine from a composite film containing I2@AuNR@SiO2@UiO-66 microbeads at 25% (w/w) irradiated with NIR light at 224 mW cm-2 and subjected to on/off switching. (b) Zoom on the stepwise release after its stabilization at the fifteenth cycle. -- Figure S12. Growth-inhibition zones induced by I2@UiO-66 microbeads (a, b) and I2@AuNR@SiO2@UiO-66 microbeads (c, d) against E. coli (a, c) or S. aureus (b, d) cultures, either after near-infrared light irradiation (left) or without irradiation (right). Ø: diameter of growth-inhibition zone. Disc diameter: 6 mm. -- Figure S13. Growth-inhibition zones induced by square sections of composite films containing iodine-loaded AuNR@SiO2@UiO-66 at 8% (a), 25% (b) and 46% (c) (w/w), against E. coli cultures, either after near-infrared light irradiation (left) or without irradiation (right). Ø: diameter of growth-inhibition zone. Film size: 1 cm2. Values are the average of at least five replicates ± standard deviation. -- Table S2. Growth-inhibition of composite films prepared at different iodine-containing microbead-loadings (8%, 25% or 46%) and tested on E. coli cultures., ICN2 is supported by the Severo Ochoa program from the Spanish MINECO (Grant No. SEV-2017-0706), Peer reviewed

DOI: http://hdl.handle.net/10261/329943
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329943
HANDLE: http://hdl.handle.net/10261/329943
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329943
PMID: http://hdl.handle.net/10261/329943
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329943
Ver en: http://hdl.handle.net/10261/329943
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329943

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329951
Dataset. 2022

SUPPORTING INFORMATION A DEPROTECTION-FREE METHOD FOR HIGH-YIELD SYNTHESIS OF GRAPHDIYNE POWDER WITH IN SITU FORMED CUO NANOPARTICLES

  • Li, Jian
  • Han, Xu
  • Wang, Dongmei
  • Zhu, Lei
  • Ha-Thi, Minh-Huong
  • Pino, Thomas
  • Arbiol, Jordi
  • Wu, Li-Zhu
  • Ghazzal, Mohamed Nawfal
11 pages. -- PDF files includes: Experimental section; Photocatalytic experiment; Synthesis of GDY powder; Preparation of CuO/GDY/TiO2 and GDY/TiO2; Preparation of Pt loaded TiO2, tables and figures. -- Figure S1. The prepared GDY powder by using deprotection-free method. -- Table S1. Screening of catalysts and solvents for the direct coupling reaction of HEB-TMS. + entry 15 was performed under Ar conditions. -- Figure S2. GC-MS spectra of the DMF solution after reaction (balck line) and the standard curve of the corresponding compound (red line). -- Figure S3. ICP-Mass results for content of Cu in the prepared CuO/GDY samples. -- Figure S4. Low- and high-magnification SEM images of the prepared CuO/GDY samples. -- Figure S5. 1*1*1 unit crystal model of CuO and atomic supercell model illustration of the CuO nanoparticle oriented as in TEM images. -- Table S2. Comparison between the experimental and the theoretical bulk plane spacing distances and angles between planes. -- Figure S6. High-resolution XPS spectra of Si in GDY. -- Table S3. The atomic percentage of different elements in pure GDY. -- Figure S7. XRD spectra of TiO2 and CuO/GDY/TiO2 with different content. -- Figure S8. (a) Raman spectra and (b) enlarged spectra of TiO2 and CuO/GDY/TiO2 with different content. - -Figure S9. (a) the full XPS spectra of TiO2 and CuO/GDY/TiO2; (b) high-resolution XPS spectra of Cu in CuO/GDY/TiO2. -- Figure S10. UV-Vis spectra of TiO2 and CuO/GDY/TiO2 with different content. -- Figure S11. photocurrent test of CuO/GDY/TiO2, GDY/TiO2, CNT/TiO2 and GR/TiO2. -- Figure S12. Tauc plot of the prepared GDY powder. -- Figure S13. Valence band spectra of the prepared GDY powder by XPS. -- Figure S14. (a) High-resolution XPS spectra of Cu in CuO/GDY/TiO2 before and after photocatalysis; (b) fitting of Cu in in CuO/GDY/TiO2 after photocatalysis. In comparison, the satellite observed for Cu 2p (corresponding to Cu2+) is significantly reduced after illumination. -- Figure S15. The proposed photocatalytic mechanism of the CuO/GDY/TiO2 photocatalysts., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329951
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329951
HANDLE: http://hdl.handle.net/10261/329951
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329951
PMID: http://hdl.handle.net/10261/329951
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329951
Ver en: http://hdl.handle.net/10261/329951
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329951

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329955
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. MATER., DOI: 10.1002/ADMA.202110099 ATOMICALLY SHARP LATERAL SUPERLATTICE HETEROJUNCTIONS BUILT-IN NITROGEN-DOPED NANOPOROUS GRAPHENE

  • Tenorio, Maria
  • Moreno, César
  • Febrer, Pol
  • Castro-Esteban, Jesús
  • Ordejón, Pablo
  • Peña, Diego
  • Pruneda, Miguel
  • Mugarza, Aitor
18 pages. -- PDF file includes: 1. Synthesis of molecular precursors Synthesis of molecular precursor 1; Synthesis of molecular precursor 2; 2. Parameters of STM images and dI/dV spectra; 3. Evolution of the lateral distances of the GNR1 template during the synthesis of the GNR1-GNR2 superlattice; 4. Sequential growth of polymer 2 for tuning of coverage; 5. Lateral extension of superlattice patches; 6. Wavefunctions at the valence band maximum and conduction band minimum; 7. Valence band maximum identification in conductance maps; 8. Charge analysis, figures and tables., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329955
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329955
HANDLE: http://hdl.handle.net/10261/329955
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329955
PMID: http://hdl.handle.net/10261/329955
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329955
Ver en: http://hdl.handle.net/10261/329955
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329955

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329958
Dataset. 2022

SJ-DOCX-1-TAM-10.1177_17588359211072621 – SUPPLEMENTAL MATERIAL FOR PROGNOSTIC VALUE OF THE IMMUNE TARGET CEACAM6 IN CANCER: A META-ANALYSIS [DATASET]

  • Burgos, Miguel
  • Cavero-Redondo, Iván
  • Álvarez-Bueno, Celia
  • Galán-Moya, Eva María
  • Pandiella, Atanasio
  • Amir, Eitan
  • Ocaña, Alberto
Supplemental material, sj-docx-1-tam-10.1177_17588359211072621 for Prognostic value of the immune target CEACAM6 in cancer: a meta-analysis by Miguel Burgos, Iván Cavero-Redondo, Celia Álvarez-Bueno, Eva María Galán-Moya, Atanasio Pandiella, Eitan Amir and Alberto Ocaña in Therapeutic Advances in Medical Oncology, Instituto de Salud Carlos III, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329958
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329958
HANDLE: http://hdl.handle.net/10261/329958
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329958
PMID: http://hdl.handle.net/10261/329958
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329958
Ver en: http://hdl.handle.net/10261/329958
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329958

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329959
Dataset. 2022

SUPPLEMENTARY INFORMATION FOR COMPETITION BETWEEN TA-TA AND TE-TE BONDING LEADING TO THE COMMENSURATE CHARGE DENSITY WAVE IN TATE4

  • Guster, Bogdan
  • Pruneda, Miguel
  • Ordejón, Pablo
  • Canadell, Enric
5 pages. -- Figures and tables., (1) Comparison between the experimental coordinates and those calculated for the TaTe4 modulated structure. (2) A view of one of the tellurium (aa) planes in the crystal structure of TaTe4 showing in-plane Te...Te short contacts and Te-Te bonds. (3) A view of the VS4 crystal structure (4) Fatband structure of VS4. (5) Comparison between band structures with and without the inclusion of Spin-Orbit coupling in the modulated TaTe4 structure., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329959
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329959
HANDLE: http://hdl.handle.net/10261/329959
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329959
PMID: http://hdl.handle.net/10261/329959
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329959
Ver en: http://hdl.handle.net/10261/329959
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329959

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329964
Dataset. 2022

SJ-DOCX-2-TAM-10.1177_17588359211072621 – SUPPLEMENTAL MATERIAL FOR PROGNOSTIC VALUE OF THE IMMUNE TARGET CEACAM6 IN CANCER A META-ANALYSIS [DATASET]

  • Burgos, Miguel
  • Cavero-Redondo, Iván
  • Álvarez-Bueno, Celia
  • Galán-Moya, Eva María
  • Pandiella, Atanasio
  • Amir, Eitan
  • Ocaña, Alberto
Supplemental material, sj-docx-2-tam-10.1177_17588359211072621 for Prognostic value of the immune target CEACAM6 in cancer: a meta-analysis by Miguel Burgos, Iván Cavero-Redondo, Celia Álvarez-Bueno, Eva María Galán-Moya, Atanasio Pandiella, Eitan Amir and Alberto Ocaña in Therapeutic Advances in Medical Oncology, Instituto de Salud Carlos III, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329964
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329964
HANDLE: http://hdl.handle.net/10261/329964
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329964
PMID: http://hdl.handle.net/10261/329964
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329964
Ver en: http://hdl.handle.net/10261/329964
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329964

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329972
Dataset. 2022

SUPPLEMENTAL MATERIAL: DOUBLING THE MOBILITY OF INAS/INGAAS SELECTIVE AREA GROWN NANOWIRES

  • Beznasyuk, Daria V.
  • Martí-Sànchez, Sara
  • Kang, Jung-Hyun
  • Tanta, Rawa
  • Rajpalke, Mohana
  • Stankevič, Tomaš
  • Wulff, Anna Christensen
  • Spadaro, Maria Chiara
  • Bergamaschini, Roberto
  • Maka, Nikhil N.
  • Petersen, Christian Emanuel N.
  • Carrad, Damon J.
  • Jespersen, Thomas Sand
  • Arbiol, Jordi
  • Krogstrup, Peter
20 pages. -- PDF file includes S1. Substrate fabrication and growth details; S2. Degradation of surface topography after thermal oxide removal prior nanowire growth; S3. Faceting of GaAs(Sb) vs GaAs nanowires; S4. The role of InGaAs growth temperature; S5. The role of InAs growth temperature; S6. InAs/InGaAs field effect mobility measurements: influence of the InGaAs buffer growth temperature; S7. InAs/InGaAs band structure simulations; S8. Transport measurements of InGaAs/GaAs(Sb) SAG nanowires without the InAs channel; S9. InAs/InGaAs field effect mobility measurements: influence of the InAs growth temperature, figures and tables., ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/329972
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329972
HANDLE: http://hdl.handle.net/10261/329972
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329972
PMID: http://hdl.handle.net/10261/329972
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329972
Ver en: http://hdl.handle.net/10261/329972
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329972

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329974
Dataset. 2022

SUPPORTING INFORMATION FOR DIRECT OBSERVATION OF THE CHEMICAL TRANSFORMATIONS IN BIVO4 PHOTOANODES UPON PROLONGED LIGHT-AGING TREATMENTS

  • Arcas, Ramón
  • Cardenas-Morcoso, Drialys
  • Spadaro, Maria Chiara
  • García-Tecedor, Miguel
  • Mesa, Camilo A.
  • Arbiol, Jordi
  • Fabregat-Santiago, Francisco
  • Giménez, Sixto
  • Mas-Marzá, Elena
11 pages. -- PDF includes: 1. Experimental section; 2. Cyclic voltammetries measurements; 3. Morphological and structural characterisation data from SEM, DRX, TEM, SAED and STEM; 4. Electrochemical characterisation data by impedance spectroscopy, figures and tables., ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant no. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/329974
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329974
HANDLE: http://hdl.handle.net/10261/329974
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329974
PMID: http://hdl.handle.net/10261/329974
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329974
Ver en: http://hdl.handle.net/10261/329974
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329974

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329975
Dataset. 2022

PROGRAMMED CELL DEATH AND AUTOPHAGY IN AN IN VITRO MODEL OF SPONTANEOUS NEURORETINAL DEGENERATION [DATASET]

  • Puertas-Neyra, Kevin
  • Galindo-Cabello, Nadia
  • Hernández-Rodríguez, Leticia A.
  • González-Pérez, Fernando
  • Rodríguez-Cabello, José Carlos
  • González-Sarmiento, Rogelio
  • Pastor, José Carlos
  • Usategui-Martín, Ricardo
  • Fernández-Bueno, Iván
Retinal neurodegenerative diseases are the leading causes of visual impairment and irreversible blindness worldwide. Although the retinal response to injury remains closely similar between different retinal neurodegenerative diseases, available therapeutic alternatives are only palliative, too expensive, or very specific, such as gene therapy. In that sense, the development of broad-spectrum neuroprotective therapies seems to be an excellent option. In this regard, it is essential to identify molecular targets involved in retinal degeneration, such as cell death mechanisms. Apoptosis has been considered as the primary cell death mechanism during retinal degeneration; however, recent studies have demonstrated that the only use of anti-apoptotic drugs is not enough to confer good neuroprotection in terms of cell viability and preservation. For that reason, the interrelationship that exists between apoptosis and other cell death mechanisms needs to be characterized deeply to design future therapeutic options that simultaneously block the main cell death pathways. In that sense, the study aimed to characterize the programmed cell death (in terms of apoptosis and necroptosis) and autophagy response and modulation in retinal neurodegenerative diseases, using an in vitro model of spontaneous retinal neurodegeneration. For that purpose, we measured the mRNA relative expression through qPCR of a selected pool of genes involved in apoptosis (BAX, BCL2, CASP3, CASP8, and CASP9), necroptosis (MLKL, RIPK1, and RIPK3), and autophagy (ATG7, BCLIN1, LC3B, mTOR, and SQSTM1); besides, the immunoexpression of their encoding proteins (Casp3, MLKL, RIPK1, LC3B, and p62) were analyzed using immunohistochemistry. Our results showed an increase of pro-apoptotic and pro-necroptotic related genes and proteins during in vitro retinal neurodegeneration. Besides, we describe for the first time the modulation between programmed cell death mechanisms and autophagy in an in vitro retinal neurodegeneration model. This study reinforces the idea that cell death mechanisms are closely interconnected and provides new information about molecular signaling and autophagy along the retinal degeneration process., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329975
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329975
HANDLE: http://hdl.handle.net/10261/329975
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329975
PMID: http://hdl.handle.net/10261/329975
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329975
Ver en: http://hdl.handle.net/10261/329975
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329975

Buscador avanzado