Resultados totales (Incluyendo duplicados): 34665
Encontrada(s) 3467 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379650
Dataset. 2024

DATASET OF "MIÑARRO, M. & GARCÍA, D. (2024). LANDSCAPE COMPOSITION AND ORCHARD MANAGEMENT EFFECTS ON BAT ASSEMBLAGES AND BAT FORAGING ACTIVITY IN APPLE CROPS. ECOSPHERE."

  • Miñarro, Marcos
  • García, Daniel
Dataset that accompany the article Miñarro, M. & García, D. (2025). Landscape composition and orchard management effects on bat assemblages and bat foraging activity in apple crops. Ecosphere, PID2020-120239RR-100 (MiCIn/AEI/10.13039/501100011033/ and FEDER MRR/PA-24-BIODIVERSIDAD-BIO02 (MiCIn and Asturian Government, Next Generation EU)., Peer reviewed

DOI: http://hdl.handle.net/10261/379650
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379650
HANDLE: http://hdl.handle.net/10261/379650
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379650
PMID: http://hdl.handle.net/10261/379650
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379650
Ver en: http://hdl.handle.net/10261/379650
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379650

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379741
Dataset. 2024

DATA FROM: METATAXONOMY AND PIGMENTS ANALYSES UNRAVEL MICROBIAL DIVERSITY AND THE RELEVANCE OF RETINAL-BASED PHOTOHETEROTROPHY AT DIFFERENT SALINITIES IN THE ODIEL SALTERNS (SW, SPAIN) [DATASET]

  • Gómez-Villegas, Patricia
  • Pérez-Rodríguez, Miguel
  • Porres, Jesús M.
  • Prados, José Carlos
  • Melguizo, Consolación
  • Vigara, Javier
  • Moreno-Garrido, Ignacio
  • León-Bañares, Rosa
In this work, metabarcoding of 16S and 18S rRNA gene coding sequences were employed to characterize the prokaryotic and eukaryotic communities across the salinity gradient (3.5, 7.8, 14.4, and 31.8% NaCl) in Odiel salterns, located in the city of Huelva (SW Spain). Coastal salterns are excellent environments to study the dynamics of the microbiota across the salinity gradient since we find from seawater, the most abundant ecosystem on Earth, to crystallization pools, one of the most extreme. Diverse harsh conditions converge in solar salterns, including high salt concentration, temperature, and solar irradiance. Most environmental factors are similar in the different ponds that comprise the salterns, excepting salinity, which increases through the series of ponds until reaching saturation concentrations. Understanding the microbiology of these ponds is important for the salt production process, given that this microbiota can physically affect the evaporation process and chemically interact with dissolved ions. In addition, these microorganisms are crucial in these ecosystems, supporting bird populations, and potentially a source of enzymes and useful carotenoids for many biotechnological applications., [Methods] Water samples were collected from four ponds of the Odiel salt flats with 3.5, 7.5, 15, and 30% salinity. Fresh biomass was harvested from 2 L of each water sample by centrifugation at 19,800 ×g. The obtained pellet was used for the extraction of genomic DNA with the GeneJET Genomic Purification kit (Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s instructions. The genomic DNA was used as a template for PCR amplification of specific regions of 16S rRNA and 18S rRNA coding genes. The hypervariable region V3-V4 of the 16S rRNA coding gene was amplified by using the primer set 341F/806R, while the primer pair 1380F/1510R was used for the amplification of the region V9 of the 18S rRNA coding gene. PCR reactions were carried out with Phusion® High-Fidelity PCR Master Mix (New England Biolabs, MA, USA). PCR products were mixed in equal ratios and purified following the Qiagen Gel Extraction Kit (Qiagen, Germany). Purified PCR products were employed for the generation of libraries with NEBNext® UltraTM DNA Library Prep Kit for Illumina and quantified via Qubit and Q-PCR. Finally, amplicons were sequenced on the Illumina platform to generate paired-end raw reads. To keep the reliability of the data, quality controls were performed at each step of the procedure, from the raw DNA samples to the final data (Q>36)., CEIMAR, Research Project for Young Sea Researchers (CEIMAR-2022) Agencia Estatal de Investigación: PID2022-140995OB-C21 Agencia Estatal de Investigación: MICIU/AEI/10.13039/501100011033, Peer reviewed

DOI: http://hdl.handle.net/10261/379741
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379741
HANDLE: http://hdl.handle.net/10261/379741
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379741
PMID: http://hdl.handle.net/10261/379741
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379741
Ver en: http://hdl.handle.net/10261/379741
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379741

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379756
Dataset. 2024

SUBTIDAL SEAGRASS AND BLUE CARBON MAPPING AT THE REGIONAL SCALE: A CLOUD-NATIVE MULTI-TEMPORAL EARTH OBSERVATION APPROACH [DATASET]

  • Roca Mora, Mar
  • Lee, Chengfa Benjamin
  • Pertiwi, Avi Putri
  • Blume, Alina
  • Caballero, Isabel
  • Navarro, Gabriel
  • Traganos, Dimosthenis
The seagrass ecosystems are among the most important organic carbon sinks on Earth, having a key role as climate change buffers. Among all seagrasses, Posidonia oceanica, an endemic seagrass species in the Mediterranean Sea, has been observed to feature the highest carbon stock and sequestration rate among all seagrasses. We developed a satellite-based workflow to complement in situ seagrass monitoring efforts in the Balearic Islands (Western Mediterranean), reducing field expenses while covering regional spatial scales. Our synoptic tool uses Sentinel-2 A/B satellite imagery at 10 m spatial resolution to generate a multi-temporal composite (2016–2022) of the Balearic Islands’ coastal waters within the Google Earth Engine cloud computing platform, optimizing image processing and highlighting the importance of a high-resolution bathymetric dataset to increase seagrass mapping accuracies. Machine learning algorithms have been applied to perform seagrass detection, obtaining a seagrass cartography up to 30 m of depth, estimating 505.6 km2 of seagrass habitat extent. Using existing in situ soil carbon stock (Cstock) data, we estimated a mean Cstock value of 12.27 ± 2.1 million megagram (Mg) Corg, while mapping a total annual C fixation (Cfix) and C sequestration (Cseq) rates of P. oceanica of 1,116.3 Mg Corg and 227 Mg Corg, according to depth. Our methodology highlights the key role of using a large image archive to generate the multi-temporal optical composite and an optimized bathymetry dataset to better map and account blue carbon in seagrass ecosystems across depth, showing the importance to integrate this Earth Observation approach to ensure a seagrass ecosystem monitoring at regional scales. This information aims to support the development of blue carbon strategies with synoptic time- and cost-efficient seagrass monitoring in the Mediterranean Sea., This research has been financially supported by the Grant CNS2023-143630 funded by MICIU/AEI/10.13039/501100011033 and by European Union Next Generation EU/PRTR; the OAPN under Grant Observatory TIAMAT, [2715/2021]; the Spanish Ministry of Science, Innovation and Universities under the Grant [FPU20/01294]; the University of Cadiz under the Grant “Estancias para la obtención de la Mención de Doctorado Internacional del Plan Propio de estímulo y apoyo a la Investigación y Transferencia – UCA 2022–2023”; the Banco Santander under Grant Fundación Universia; and DLR-DAAD Scholarship under Grant nº 57478193., Peer reviewed

DOI: http://hdl.handle.net/10261/379756
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379756
HANDLE: http://hdl.handle.net/10261/379756
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379756
PMID: http://hdl.handle.net/10261/379756
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379756
Ver en: http://hdl.handle.net/10261/379756
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379756

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379766
Dataset. 2024

BATHYMETRY BALEARIC ISLANDS - 10 M RASTER [DATASET]

  • Roca Mora, Mar
  • Lee, Chengfa Benjamin
  • Pertiwi, Avi Putri
  • Blume, Alina
  • Caballero, Isabel
  • Navarro, Gabriel
  • Traganos, Dimosthenis
Reprocess of different high to medium resolution available bathymetric datasets in the Balearic Islands to a 10 m grid from 0 to 40 m depth using Inverse Distance Weighting (IDW). EPSG: 4326, WGS 1964., MICIU/AEI/ 10.13039/501100011033 - CNS2023-143630; Spanish Ministry of Science, Innovation and Universities - FPU20/01294; European Union Next Generation EU/PRTR; European Union-Next Generation Program; University of Cadiz., Peer reviewed

DOI: http://hdl.handle.net/10261/379766
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379766
HANDLE: http://hdl.handle.net/10261/379766
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379766
PMID: http://hdl.handle.net/10261/379766
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379766
Ver en: http://hdl.handle.net/10261/379766
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379766

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379771
Dataset. 2024

BATHYMETRIC ISOBATHS FROM THE BALEARIC ISLANDS (0-40 M) [DATASET]

  • Roca Mora, Mar
  • Lee, Chengfa Benjamin
  • Pertiwi, Avi Putri
  • Blume, Alina
  • Caballero, Isabel
  • Navarro, Gabriel
  • Traganos, Dimosthenis
Processed bathymetric isobaths (0-40 m depth) available from the Balearic Islands and used to interpolate the following product: https://doi.org/10.6084/m9.figshare.26898310.v1 The coastline from CNIG (IGN) was used as the 0 m isobath. Eivissa, Formentera and Menorca isobaths were accessed through MITECO. Cabrera isobaths were accessed through the National Park, and Mallorca's isobaths were retrieved from different projects across the island., MICIU/AEI/ 10.13039/501100011033 - CNS2023-143630; Spanish Ministry of Science, Innovation and Universities - FPU20/01294; European Union Next Generation EU/PRTR; European Union-Next Generation Program; University of Cadiz., Peer reviewed

DOI: http://hdl.handle.net/10261/379771
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379771
HANDLE: http://hdl.handle.net/10261/379771
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379771
PMID: http://hdl.handle.net/10261/379771
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379771
Ver en: http://hdl.handle.net/10261/379771
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379771

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/382013
Dataset. 2024

SYNTHESIS PRODUCT FOR OCEAN TIME SERIES (SPOTS) [DATASET]

  • Lange, Nico
  • Fiedler, Björn
  • Álvarez-Rodríguez, Marta
  • Benoit-Cattin, Alice
  • Benway, Heather
  • Buttigieg, Pier Luigi
  • Coppola, Laurent
  • Currie, Kim
  • Flecha, Susana
  • Gerlach, Dana S.
  • Honda, Makio
  • Huertas, I. Emma
  • Kinkade, Danie
  • Muller-Karger, Frank
  • Lauvset, Siv K.
  • Körtzinger, Arne
  • O'Brien, Kevin M.
  • Ólafsdóttir, Sólveig R.
  • Pacheco, Fernando C.
  • Rueda-Roa, Digna
  • Skjelvan, Ingunn
  • Wakita, Masahide
  • White, Angelicque E.
  • Tanhua, Toste
This time-series data synthesis pilot product includes data from 12 fixed ship-based time-series programs with a focus on biogeochemical essential ocean variables., Methods & Sampling. Oceanographic data from twelve fixed ship-based time-series programs were synthesized into a pilot product with focus on biogeochemical essential ocean variables (BGC-EOV). Measurements of dissolved oxygen, dissolved inorganic nutrients, inorganic carbon (pH, TALK, DIC, pCO2), particulate matter, and DOC were compiled from the time series programs listed below. Methods, Sampling, and Instruments are dependent on individual time-series programs, and often vary within a single time series program from cruise-to-cruise. Instruments are listed in the section below, with detailed metadata available at ODIS (https://oceaninfohub.org/odis/). Additional details may be found by viewing the related datasets and publications sections below., The presented time-series data synthesis pilot product includes data from 12 fixed ship-based time-series programs. The related stations represent unique marine environments within the Atlantic Ocean, Pacific Ocean, Mediterranean Sea, Nordic Seas, and Caribbean Sea. The focus of the pilot has been placed on biogeochemical essential ocean variables: dissolved oxygen, dissolved inorganic nutrients, inorganic carbon (pH, total alkalinity, dissolved inorganic carbon, and partial pressure of CO2), particulate matter, and dissolved organic carbon. The time-series used include a variety of temporal resolutions (monthly, seasonal, or irregular), time ranges (10 to 36 years), and bottom depths (80 to 6000 meters), with the oldest samples dating back to 1983 and the most recent one corresponding to 2021. Besides having been harmonized into the same format (semantics, ancillary data, units), the data were subjected to a qualitative assessment in which the applied methods were evaluated and categorized. Additional data-quality descriptors include precision and accuracy estimates. This data product pilot facilitates a variety of applications that benefit from the collective value of biogeochemical time-series observations and forms the basis for a sustained time-series living data product, complementing relevant products for the global interior ocean carbon data (GLobal Ocean Data Analysis Project), global surface ocean carbon data (Surface Ocean CO2 Atlas; SOCAT), and global interior and surface methane and nitrous oxide data (MarinE MethanE and NiTrous Oxide product)., This time-series data synthesis pilot product includes data from 12 fixed ship-based time-series programs with a focus on biogeochemical essential ocean variables. Data used in this synthesis product were made possible with funding through the following: EU Horizon 2020 through the EuroSea Innovation Action (grant agreement 862626) EU Horizon 2020 iAtlantic programme (grant agreement 818123) European Union’s Horizon 2020 research and innovation program (grant agreement 820989; COMFORT). WASCAL MRP-CCMS project from the German Federal Ministry of Education and Research (BMBF; grant agreement no. 01LG1805A). National Science Foundation (OCE-1259043, OCE-175651, and RISE-2028291). Norwegian Environment Agency under grant agreement nos. 14078029, 15078033, 16078007, 17018007, and 21087110. Grant-in-Aid for Scientific Research (20H04349) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) KAKENHI. Mediterranean Ocean Observing System for the Environment program (MOOSE) coordinated by CNRS-INSU and the Research Infrastructure ILICO (CNRS-IFREMER). The European projects CARBOOCEAN, CARBOCHANGE, SESAME, PERSEUS and COMFORT The Spanish Ministry of Science through the grants CTM2005/01091-MAR and CTM2008-05680-C02-01 and the Junta de Andalucía through the TECADE project (PY20_00293) Centro Nacional Instituto Español de Oceanografía (IEO-CSIC), Peer reviewed

DOI: http://hdl.handle.net/10261/382013
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/382013
HANDLE: http://hdl.handle.net/10261/382013
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/382013
PMID: http://hdl.handle.net/10261/382013
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/382013
Ver en: http://hdl.handle.net/10261/382013
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/382013

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379782
Dataset. 2024

SEAGRASS EXTENT, CARBON FIXATION AND SEQUESTRATION (BALEARIC ISLANDS) [DATASET]

  • Roca Mora, Mar
  • Lee, Chengfa Benjamin
  • Pertiwi, Avi Putri
  • Blume, Alina
  • Caballero, Isabel
  • Navarro, Gabriel
  • Traganos, Dimosthenis
Seagrass extent dataset derived from Sentinel-2 (0-30 m), as well as the estimated annual carbon fixation and sequestration rate for Posidonia oceanica in the Balearic Islands. According to Pergent-Martini et al (2021) in Posidonia oceanica: Carbon fixation = -202.5 * ln (depth) + 724.6 Carbon sequestration = -40.5 * ln (depth) + 145.5, MICIU/AEI/ 10.13039/501100011033 - CNS2023-143630; Spanish Ministry of Science, Innovation and Universities - FPU20/01294; European Union Next Generation EU/PRTR; European Union-Next Generation Program; University of Cadiz., Peer reviewed

DOI: http://hdl.handle.net/10261/379782
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379782
HANDLE: http://hdl.handle.net/10261/379782
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379782
PMID: http://hdl.handle.net/10261/379782
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379782
Ver en: http://hdl.handle.net/10261/379782
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379782

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379910
Dataset. 2024

SUPPLEMENTARY INFORMATION FOR CYTOMEGALOVIRUS INFECTION OF THE FETAL BRAIN: INTAKE OF ASPIRIN DURING PREGNANCY BLUNTS NEURODEVELOPMENTAL PATHOGENESIS IN THE OFFSPRING

  • Tarhini, Sarah
  • Crespo-Quiles, Carla
  • Buhler, Emmanuelle
  • Pineau, Louison
  • Pallesi-Pocachard, Emilie
  • Villain, Solène
  • Saha, Saswati
  • Silvagnoli, Lucas
  • Stamminger, Thomas
  • Luche, Hervé
  • Cardoso, Carlos
  • Pais de Barros, Jean-Paul
  • Burnashev, N.
  • Szepetowski, Pierre
  • Bauer, Sylvian
Supplementary Material 1: PDF file --Supplementary Material 2: xlsm file, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/379910
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379910
HANDLE: http://hdl.handle.net/10261/379910
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379910
PMID: http://hdl.handle.net/10261/379910
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379910
Ver en: http://hdl.handle.net/10261/379910
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/379910

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/380066
Dataset. 2022

TPCOMP: TEMPORAL POINT CLOUDS OF A WORKPIECE IN THE MACHINING PROCESS [DATASET]

  • Leutgeb, Alexander
  • Zoumpekas, Thanasis
  • Salamó, Maria
  • Puig, Anna
Temporal point clouds sampled from a workpiece in progress using 16 different machining tools. The datasets were created using a machining simulation in the Unit Industrial Software Applications, RISC Software GmbH, Hagenberg, Austria in the context of the EU-network GRAPES (http://grapes-network.eu)., Machine learning (Thesaurus UB) https://vocabularis.crai.ub.edu/thub/concept/thub:981058506973006706 Neural networks (Computer science) (Thesaurus UB) https://vocabularis.crai.ub.edu/thub/concept/thub:981058506729006706 Computer simulation (Thesaurus UB) https://vocabularis.crai.ub.edu/thub/concept/thub:981058505709706706, Experimental data., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/380066
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/380066
HANDLE: http://hdl.handle.net/10261/380066
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/380066
PMID: http://hdl.handle.net/10261/380066
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/380066
Ver en: http://hdl.handle.net/10261/380066
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/380066

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/380133
Dataset. 2024

ADDITIONAL FILE 1 OF CLINICAL EXOME ANALYSIS AND TARGETED GENE REPAIR OF THE C.1354DUPT VARIANT IN IPSC LINES FROM PATIENTS WITH PROM1-RELATED RETINOPATHIES EXHIBITING DIVERSE PHENOTYPES [DATASET]

  • Puertas-Neyra, Kevin
  • Coco, Rosa M.
  • Hernández-Rodríguez, Leticia A.
  • Gobelli, Dino
  • García-Ferrer, Yenisey
  • Palma-Vecino, Raicel
  • Tellería, Juan José
  • Simarro-Grande, María
  • Fuente, Miguel A. de la
  • Fernández-Bueno, Iván
Supplementary file 1: List of the 998 genes related to retinal diseases evaluated in the clinical exome sequencing analysis., Agencia Estatal de Investigación, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/380133
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/380133
HANDLE: http://hdl.handle.net/10261/380133
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/380133
PMID: http://hdl.handle.net/10261/380133
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/380133
Ver en: http://hdl.handle.net/10261/380133
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/380133

Buscador avanzado