Encontrada(s) 3387 página(s)
MICROSATELLITE GENETIC CHARACTERIZATION OF SILENE CILIATA POIRET (CARYOPHYLLACEAE)
- Javier Morente López
- Alfredo García Fernandez
- José María Iriondo Alegría
ANTONIO CORREDERA E INFORMANTE MP (VALVERDI DU FRESNU / VALVERDE DEL FRESNO). CAMBIOS SOCIALES Y LINGÜÍSTICOS EN LAS ÚLTIMAS DÉCADAS
- Álvarez Pérez, Xosé Afonso (coord.)
FRANCISCO Y LOLA (RUBIÁS). LANA Y LINO = LÃ E LINHO = WOOL, FLAX AND LINEN.
- Álvarez Pérez, Xosé Afonso (coord.)
AGUSTÍN NEVADO (HERRERA DE ALCÁNTARA). CEREALES. EL PAN.
- Álvarez Pérez, Xosé Afonso (coord.)
CARLOTA (SAN BENITO DE LA CONTIENDA). LA VIDA DE ANTES
- Álvarez Pérez, Xosé Afonso (coord.)
NUMERICAL DATASET FOR THE PERFORMANCE OF ACESS-POINT SELECTION TECHNIQUES FOR CELL-FREE NON-COHERENT MASSIVE SIMO BASED ON DIFFERENTIAL M-ARY PSK
- López Morales, Manuel José
FEDERICO-TENA WORLD TRADE HISTORICAL DATABASE : ROMANIA
- Federico, Giovanni
- Tena Junguito, Antonio
SUBSET OF QUICK, DRAW! DATASET FOR NEURAL NETWORK PRE-TRAINING / SUBCONJUNTO DEL CONJUNTO DE DATOS QUICK, DRAW! PARA PRE-ENTRENAMIENTO DE REDES NEURONALES
- Juan Guerrero Martín
- Alba Gómez-Valadés Batanero
- Estela Díaz López
- Margarita Bachiller Mayoral
- José Manuel Cuadra Troncoso
- Rafael Martínez Tomás
- Sara García Herranz
- María del Carmen Díaz Mardomingo
- Herminia Peraita Adrados
- Mariano Rincón Zamorano
Description of the project
This dataset is the result of the research carried out in the project "A Benchmark for Rey-Osterrieth Complex Figure (ROCF) Test Automatic Scoring", whose main goal was to establish a baseline for the scoring task consisting of: a dataset with 528 ROCF and results obtained by several deep learning models, as well as, by a group of psychology experts.,Description of the dataset
This dataset contains a folder with 414000 drawings from Quick, Draw! dataset.,Methodology
The methodology used to collect the data consists of 4 steps:- Step 1. Downloading the Quick, Draw! images in binary format.
- Step 2. Selection of 1200 images for each of the 345 classes (414000 elements in total).
- Step 3. The image size is 256x256 and they are converted from vector format into pixel format.
- Step 4. The 414000 images are divided into three sets: training (289800 elements), validation (62100 elements) and test (62100 elements).
Descripción del proyecto
El contenido de este dataset es resultado de la investigación llevada a cabo en el proyecto "Banco de Pruebas para la Puntuación Automática del Test de la Figura Compleja de Rey-Osterrieth (FCRO)", cuyo objetivo principal era el de establecer una línea base para dicha tarea que incluye: un dataset con 528 FCRO y resultados obtenidos por varios modelos de aprendizaje profundo, así como, por varios profesionales de la psicología.,Descripción del dataset
Este dataset contiene una carpeta con 414000 dibujos del conjunto de datos Quick, Draw!,Metolodogía
La metodología empleada para la obtención de los datos incluye 4 etapas:- Etapa 1. Descarga de las imágenes de Quick, Draw! en formato binario.
- Etapa 2. Selección de 1200 imágenes por cada una de las 345 clases (414000 elementos en total).
- Etapa 3. El tamaño de las imágenes es de 256x256 y son transformadas de formato vectorial a formato de píxel.
- Etapa 4. Las 414000 imágenes son divididas en tres conjuntos: entrenamiento (289800 elementos), validación (62100 elementos) y test (62100 elementos).
SUPPLEMENTARY CODE FOR THE ARTICLE: EXTENDING CELLULAR EVOLUTIONARY ALGORITHMS WITH MESSAGE PASSING
- Severino Fernández Galán
Cellular evolutionary algorithms (cEAs) use structured populations whose evolutionary cycle is governed by local interactions among individuals. This helps to prevent the premature convergence to local optima that usually takes place in panmictic populations. The present work extends cEAs by means of a message passing phase whose main effect is a more effective exploration of the search space. The mutated offspring that potentially replaces the original individual under cEAs is considered under message passing cellular evolutionary algorithms (MPcEAs) as a message sent from the original individual to itself. In MPcEAs, unlike in cEAs, a new message is sent from the original individual to each of its neighbors, representing a neighbor’s mutated offspring whose second parent is selected from the neighborhood of the original individual. Thus, every individual in the population ultimately receives one additional candidate for replacement from each of its neighbors rather than having a unique candidate. Experimental tests conducted in the domain of real function optimization for continuous search spaces show that, in general, MPcEAs significantly outperform cEAs in terms of effectiveness. Specifically, the best solution obtained through MPcEAs has an importantly improved fitness quality in comparison to that obtained by cEAs.
LOCAL GEOMAGNETIC INDEX (LDI) FOR 2016 AT DIFFERENT LOCATIONS
- Guerrero Ortega, Antonio
- Cid Tortuero, Consuelo
- Saiz Villanueva, Elena