Resultados totales (Incluyendo duplicados): 33777
Encontrada(s) 3378 página(s)
Encontrada(s) 3378 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331381
Dataset. 2022
TABLE_1_A NOVEL GENE SIGNATURE UNVEILS THREE DISTINCT IMMUNE-METABOLIC REWIRING PATTERNS CONSERVED ACROSS DIVERSE TUMOR TYPES AND ASSOCIATED WITH OUTCOMES.DOCX
- Pedrosa, Leire
- Foguet, Carles
- Oliveres, Helena
- Archilla, Iván
- García de Herreros, Marta
- Rodríguez, Adela
- Postigo, Antonio
- Benítez-Ribas, Daniel
- Camps, Jordi
- Cuatrecasas, Miriam
- Castells, Antoni
- Prat, Aleix
- Thomson, Timothy M.
- Maurel, Joan
- Cascante, Marta
Supplementary Table S1: Patients characteristics, Existing immune signatures and tumor mutational burden have only modest predictive capacity for the efficacy of immune check point inhibitors. In this study, we developed an immune-metabolic signature suitable for personalized ICI therapies. A classifier using an immune-metabolic signature (IMMETCOLS) was developed on a training set of 77 metastatic colorectal cancer (mCRC) samples and validated on 4,200 tumors from the TCGA database belonging to 11 types. Here, we reveal that the IMMETCOLS signature classifies tumors into three distinct immune-metabolic clusters. Cluster 1 displays markers of enhanced glycolisis, hexosamine byosinthesis and epithelial-to-mesenchymal transition. On multivariate analysis, cluster 1 tumors were enriched in pro-immune signature but not in immunophenoscore and were associated with the poorest median survival. Its predicted tumor metabolic features suggest an acidic-lactate-rich tumor microenvironment (TME) geared to an immunosuppressive setting, enriched in fibroblasts. Cluster 2 displays features of gluconeogenesis ability, which is needed for glucose-independent survival and preferential use of alternative carbon sources, including glutamine and lipid uptake/β-oxidation. Its metabolic features suggest a hypoxic and hypoglycemic TME, associated with poor tumor-associated antigen presentation. Finally, cluster 3 is highly glycolytic but also has a solid mitochondrial function, with concomitant upregulation of glutamine and essential amino acid transporters and the pentose phosphate pathway leading to glucose exhaustion in the TME and immunosuppression. Together, these findings suggest that the IMMETCOLS signature provides a classifier of tumors from diverse origins, yielding three clusters with distinct immune-metabolic profiles, representing a new predictive tool for patient selection for specific immune-metabolic therapeutic approaches., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/331381
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331381
HANDLE: http://hdl.handle.net/10261/331381
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331381
PMID: http://hdl.handle.net/10261/331381
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331381
Ver en: http://hdl.handle.net/10261/331381
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331381
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331382
Dataset. 2022
SUPPLEMENTARY TEXTS FOR TOWARDS MEASURING ENVIRONMENTAL INCOME THROUGH A REFINED UNITED NATIONS SEEA EA: APPLICATION TO PUBLICLY-OWNED, PROTECTED, PINE-FOREST-FARM CASE STUDIES IN ANDALUSIA, SPAIN
- Campos Palacín, Pablo
- Mesa, Bruno
- Álvarez, Alejandro
- Oviedo Pro, José Luis
- Caparrós Gass, Alejandro
10 pages. -- List of contents: Supplementary text S1. Measuring the refined SEEA EA environmental income. -- Supplementary text S2. AAS and rSEEA environmental income comparison. -- Supplementary text S3. Measuring the standard SNA final products and values added in the pine-forest-farm case studies., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/331382
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331382
HANDLE: http://hdl.handle.net/10261/331382
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331382
PMID: http://hdl.handle.net/10261/331382
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331382
Ver en: http://hdl.handle.net/10261/331382
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331382
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331383
Dataset. 2022
TABLE_2_A NOVEL GENE SIGNATURE UNVEILS THREE DISTINCT IMMUNE-METABOLIC REWIRING PATTERNS CONSERVED ACROSS DIVERSE TUMOR TYPES AND ASSOCIATED WITH OUTCOMES.DOCX [DATASET]
- Pedrosa, Leire
- Foguet, Carles
- Oliveres, Helena
- Archilla, Iván
- García de Herreros, Marta
- Rodríguez, Adela
- Postigo, Antonio
- Benítez-Ribas, Daniel
- Camps, Jordi
- Cuatrecasas, Miriam
- Castells, Antoni
- Prat, Aleix
- Thomson, Timothy M.
- Maurel, Joan
- Cascante, Marta
Supplementary Table S2: Important features identified by One-way ANOVA and post-hoc analysis (Fisher’s LSD) comparing the expression of different signatures between IMMETCOLS Clusters., Existing immune signatures and tumor mutational burden have only modest predictive capacity for the efficacy of immune check point inhibitors. In this study, we developed an immune-metabolic signature suitable for personalized ICI therapies. A classifier using an immune-metabolic signature (IMMETCOLS) was developed on a training set of 77 metastatic colorectal cancer (mCRC) samples and validated on 4,200 tumors from the TCGA database belonging to 11 types. Here, we reveal that the IMMETCOLS signature classifies tumors into three distinct immune-metabolic clusters. Cluster 1 displays markers of enhanced glycolisis, hexosamine byosinthesis and epithelial-to-mesenchymal transition. On multivariate analysis, cluster 1 tumors were enriched in pro-immune signature but not in immunophenoscore and were associated with the poorest median survival. Its predicted tumor metabolic features suggest an acidic-lactate-rich tumor microenvironment (TME) geared to an immunosuppressive setting, enriched in fibroblasts. Cluster 2 displays features of gluconeogenesis ability, which is needed for glucose-independent survival and preferential use of alternative carbon sources, including glutamine and lipid uptake/β-oxidation. Its metabolic features suggest a hypoxic and hypoglycemic TME, associated with poor tumor-associated antigen presentation. Finally, cluster 3 is highly glycolytic but also has a solid mitochondrial function, with concomitant upregulation of glutamine and essential amino acid transporters and the pentose phosphate pathway leading to glucose exhaustion in the TME and immunosuppression. Together, these findings suggest that the IMMETCOLS signature provides a classifier of tumors from diverse origins, yielding three clusters with distinct immune-metabolic profiles, representing a new predictive tool for patient selection for specific immune-metabolic therapeutic approaches., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/331383
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331383
HANDLE: http://hdl.handle.net/10261/331383
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331383
PMID: http://hdl.handle.net/10261/331383
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331383
Ver en: http://hdl.handle.net/10261/331383
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331383
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331384
Dataset. 2023
SPANISH DROUGHT CATALOGUE, V1.0.0. [DATASET]
- González Hidalgo, José Carlos
- Beguería, Santiago
- Trullenque Blanco, Víctor
- Vicente Serrano, Sergio M.
- Peña-Angulo, Dhais
[EN] 1. Compressed folder ('Spanish_Drought_Catalogue_v1.0.0-Drought_episodes.zip'): 40 folders with the graphic description of each event, numbered from 1 to 40 and with their respective start and end dates (e.g. '19_1973_oct-1974_feb'). In each of them, three folders: 'maps' with the integral maps of duration and intensity (.png format), 'seq_ano' with the maps of the spatial spread (.png format) and 'ts' with the averages of SPI01 and SPI12 and the area affected by the drought (SPI12 =< -0.84) (.png format). Map legends (.png format). .xlsx file showing the identification and characterization of the events. 2. Compressed folder ('Drought_events_characterization_code.zip'): project, script and folder with the data necessary to generate the descriptive analysis material in R. 3. netCDF file ('Spanish_Drought_Catalogue_v1.0.0-SPI_grids.nc'). Variables (6): 'SPI-01' (1-month Standardized Precipitation Index), 'SPI-03' (3-month Standardized Precipitation Index), 'SPI-06' (6-month Standardized Precipitation Index), 'SPI-12' (12-month Standardized Precipitation Index), 'SPI-36' (36-month Standardized Precipitation Index) and 'evnt' (Drought episodes). Temporal extent: 1272 (months from 1915-01 to 2020-01). Spatial extent: longitude = 125, latitude: 77, units = 0.1 degrees. Reference system: EPSG 4326, WGS84 projection, geographic coordinates. Open Data Commons Attribution (ODC-By 1.0)., [EN] The database consists of a netCDF ('Spanish_Drought_Catalogue_v1.0.0-SPI_grids.nc') and two zipped folders ('Spanish_Drought_Catalogue_v1.0.0-Drought_episodes.zip' and 'Drought_events_characterization_code.zip'). The first folder includes a descriptive analysis of the 40 drought episodes identified according to the criteria of drought intensity (SPI12 =< -0.84) and area affected (>20 % of the grid area). For each episode, the time series of the SPI01 and SPI12 average of the whole grid (expressed in anomalies); the area of the grid under drought conditions (SPI12 =< -0.84) (expressed in percent per one); the integral maps of the episode according to its duration (expressed in number of months) and intensity (average of the cells under drought conditions); and the maps representing the spatial propagation of the episode are included. The second folder includes the code necessary to generate the descriptive analysis material. The netCDF consists of six variables. The first five are the precipitation anomalies (Standardized Precipitation Index at 1 month, 3, 6, 12 and 36 time scales: 'SPI-01', 'SPI-03', 'SPI-06', 'SPI-12' and 'SPI-36'), these have been obtained from the monthly data of the MOPREDAScentury precipitation grid (https://doi.org/10.20350/digitalCSIC/15136). The sixth variable is the drought events themselves ('evnt'), numbered from 1 to 40. These six variables refer to the Spanish peninsular territory and the time period 1915/01-2020/01. This record corresponds to version 1.0.0 of the dataset. The database is distributed under an open license (Open Data Commons Attribution, ODC-By)., [ES] La base de datos consta de un netCDF ('Spanish_Drought_Catalogue_v1.0.0-SPI_grids.nc') y dos carpetas comprimidas ('Spanish_Drought_Catalogue_v1.0.0-Drought_episodes.zip' y 'Drought_events_characterization_code.zip'). En la primera carpeta se incluye un análisis descriptivo de los 40 episodios de sequía identificados según los criterios de intensidad de la sequía (SPI12 =< -0.84) y superficie afectada (>20 % de la superficie de la malla). Para cada episodio se incluyen las series temporales del SPI01 y SPI12 promedio de toda la malla (expresadas en anomalías); el área de la malla en condiciones de sequía (SPI12 =< -0.84) (expresada en tanto por uno); los mapas integrales del episodio atendiendo a su duración (expresada en número de meses) e intensidad (promedio de las celdas en condiciones de sequía); y los mapas que representan la propagación espacial del episodio. En la segunda carpeta se incluye el código necesario para generar el material del análisis descriptivo. El netCDF consta de seis variables. Las cinco primeras son las anomalías de precipitación (Standardized Precipitation Index a escala temporal de 1 mes, 3, 6, 12 y 36: ‘SPI-01’, ‘SPI-03’, ‘SPI-06’, ‘SPI-12’ y ‘SPI-36’), estas han sido obtenidas a partir de los datos mensuales de la malla de precipitación MOPREDAScentury (https://doi.org/10.20350/digitalCSIC/15136). La sexta variable son los eventos de sequía propiamente dichos (‘evnt’), numerados del 1 al 40. Estas seis variables están referidas al territorio peninsular español y el periodo temporal 1915/01-2020/01. Este registro se corresponde con la versión 1.0.0 del conjunto de datos. La base de datos se distribuye bajo una licencia abierta (Open Data Commons Attribution, ODC-By)., Project PID2020-116860RB-C22: Extremos térmicos y pluviométricos en la España peninsular 1916-2020), funded by the Spanish Ministry of Science., No
DOI: http://hdl.handle.net/10261/331384, https://doi.org/10.20350/digitalCSIC/15446
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331384
HANDLE: http://hdl.handle.net/10261/331384, https://doi.org/10.20350/digitalCSIC/15446
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331384
PMID: http://hdl.handle.net/10261/331384, https://doi.org/10.20350/digitalCSIC/15446
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331384
Ver en: http://hdl.handle.net/10261/331384, https://doi.org/10.20350/digitalCSIC/15446
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331384
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331386
Dataset. 2022
SUPPLEMENTARY MATERIAL: ECOTOXICOLOGICAL TOOLS IN SUPPORT OF THE AIMS OF THE EUROPEAN WATER FRAMEWORK DIRECTIVE: A STEP TOWARDS A MORE HOLISTIC ECOSYSTEM-BASED APPROACH
- Martínez-Haro, Mónica
- Acevedo, Pelayo
- Pais-Costa, Antónia Juliana
- Neto, Joao M.
- Vieira, Luis R.
- Ospina-Álvarez, Natalia
- Taggart, Mark A.
- Guilhermino, Lúcia
- Ribeiro, Rui
- Marques, João Carlos
Supplementary data 1:
-Sheets: 20 -Tables: 10 -Figures: 1, Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/331386
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331386
HANDLE: http://hdl.handle.net/10261/331386
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331386
PMID: http://hdl.handle.net/10261/331386
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331386
Ver en: http://hdl.handle.net/10261/331386
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331386
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331387
Dataset. 2022
TABLE_3_A NOVEL GENE SIGNATURE UNVEILS THREE DISTINCT IMMUNE-METABOLIC REWIRING PATTERNS CONSERVED ACROSS DIVERSE TUMOR TYPES AND ASSOCIATED WITH OUTCOMES.DOCX [DATASET]
- Pedrosa, Leire
- Foguet, Carles
- Oliveres, Helena
- Archilla, Iván
- García de Herreros, Marta
- Rodríguez, Adela
- Postigo, Antonio
- Benítez-Ribas, Daniel
- Camps, Jordi
- Cuatrecasas, Miriam
- Castells, Antoni
- Prat, Aleix
- Thomson, Timothy M.
- Maurel, Joan
- Cascante, Marta
Supplementary Table S3: Important features identified by One-way ANOVA and post-hoc analysis (Fisher’s LSD) comparing the expression of metabolic genes in the IMMETCOLS Clusters. (Part 1). Supplementary Table S3: Important features identified by One-way ANOVA and post-hoc analysis (Fisher’s LSD) comparing the expression of metabolic genes in the IMMETCOLS Clusters. (Part 2), Existing immune signatures and tumor mutational burden have only modest predictive capacity for the efficacy of immune check point inhibitors. In this study, we developed an immune-metabolic signature suitable for personalized ICI therapies. A classifier using an immune-metabolic signature (IMMETCOLS) was developed on a training set of 77 metastatic colorectal cancer (mCRC) samples and validated on 4,200 tumors from the TCGA database belonging to 11 types. Here, we reveal that the IMMETCOLS signature classifies tumors into three distinct immune-metabolic clusters. Cluster 1 displays markers of enhanced glycolisis, hexosamine byosinthesis and epithelial-to-mesenchymal transition. On multivariate analysis, cluster 1 tumors were enriched in pro-immune signature but not in immunophenoscore and were associated with the poorest median survival. Its predicted tumor metabolic features suggest an acidic-lactate-rich tumor microenvironment (TME) geared to an immunosuppressive setting, enriched in fibroblasts. Cluster 2 displays features of gluconeogenesis ability, which is needed for glucose-independent survival and preferential use of alternative carbon sources, including glutamine and lipid uptake/β-oxidation. Its metabolic features suggest a hypoxic and hypoglycemic TME, associated with poor tumor-associated antigen presentation. Finally, cluster 3 is highly glycolytic but also has a solid mitochondrial function, with concomitant upregulation of glutamine and essential amino acid transporters and the pentose phosphate pathway leading to glucose exhaustion in the TME and immunosuppression. Together, these findings suggest that the IMMETCOLS signature provides a classifier of tumors from diverse origins, yielding three clusters with distinct immune-metabolic profiles, representing a new predictive tool for patient selection for specific immune-metabolic therapeutic approaches., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/331387
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331387
HANDLE: http://hdl.handle.net/10261/331387
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331387
PMID: http://hdl.handle.net/10261/331387
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331387
Ver en: http://hdl.handle.net/10261/331387
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331387
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331388
Dataset. 2022
SUPPLEMENTARY MATERIALS OF THE ARTICLE USE OF THE SENTINEL-2 AND LANDSAT-8 SATELLITES FOR WATER QUALITY MONITORING: AN EARLY-WARNING TOOL IN THE MAR MENOR COASTAL LAGOON
- Caballero, Isabel
- Roca Mora, Mar
- Santos-Echeandía, Juan
- Bernárdez, Patricia
- Navarro, Gabriel
9 pages. -- Figure S1: RGB (Red–Green–Blue) composite image on (a) 8, (b) 13, and (c) 18 August 2021 of the Sentinel-2 satellite (10 m spatial resolution). -- Figure S2: Turbidity (FNU) on (a) 3, (b) 8, (c) 13, and (d) 18, August 2021 of the Sentinel-2 satellite (10 m spatial resolution); (e–h) the same for chlorophyll-a concentration (Chl-a, mg/m3). -- Figure S3: Sentinel-2 and Landsat-8 RGB (Red–Green–Blue) composite image acquired on (a) 4 September 2021, (b) 7 September 2021, (c) 11 September 2021, (d) 12 September 2021, (e) 17 September 2021, and (f) 22 September 2021. -- Figure S4: Turbidity (FNU) from Sentinel-2 and Landsat-8 acquired on (a) 4 September 2021, (b) 7 September 2021, (c) 11 September 2021, (d) 12 September 2021, (e) 17 September 2021, and (f) 22 September 2021. -- Figure S5: Chlorophyll-a concentration (Chl-a, mg/m3) from Sentinel-2 and Landsat-8 acquired on (a) 4 September 2021, (b) 7 September 2021, (c) 11 September 2021, (d) 12 September 2021, (e) 17 September 2021, and (f) 22 September 2021. -- Figure S6: RGB (Red–Green–Blue) composite image from Sentinel-2 and Landsat-8 acquired on (a) 11, (b) 12, (c) 21, and (d) 28 March 2021. -- Figure S7: Turbidity (FNU) from Sentinel-2 and Landsat-8 acquired on (a) 11, (b) 12, (c) 21, and (d) 28 March 2021. -- Figure S8: (a) RGB (Red–Green–Blue) composite image, and (b) Turbidity (FNU) from Sentinel-2 on 21 March 2021 corresponding to the southeastern shore of Mar Menor., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/331388
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331388
HANDLE: http://hdl.handle.net/10261/331388
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331388
PMID: http://hdl.handle.net/10261/331388
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331388
Ver en: http://hdl.handle.net/10261/331388
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331388
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331393
Dataset. 2022
SUPPLEMENTARY MATERIAL: MAKING THE COMPETITIVE EXCLUSION PRINCIPLE OPERATIONAL AT THE BIOGEOGRAPHICAL SCALE USING FUZZY LOGIC
- Real, Raimundo
- Báez, José Carlos
- Fa, Julia E.
- Olivero, Jesús
- Acevedo, Pelayo
Supplementary material 1: Relationship between favorability and probability.
Supplementary material 2: Testing the theory with empirical data., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/331393
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331393
HANDLE: http://hdl.handle.net/10261/331393
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331393
PMID: http://hdl.handle.net/10261/331393
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331393
Ver en: http://hdl.handle.net/10261/331393
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331393
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331397
Dataset. 2022
DATA AVAILABILITY: RANDOM ENCOUNTER MODEL IS A RELIABLE METHOD FOR ESTIMATING POPULATION DENSITY OF MULTIPLE SPECIES USING CAMERA TRAPS
- Palencia, Pablo
Data of the paper entitled "Random encounter model is a reliable method for estimating population density of multiple species using camera traps" published on Remote Sensing in Ecology and Conservation., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/331397
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331397
HANDLE: http://hdl.handle.net/10261/331397
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331397
PMID: http://hdl.handle.net/10261/331397
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331397
Ver en: http://hdl.handle.net/10261/331397
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331397
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331398
Dataset. 2022
TABLE_4_A NOVEL GENE SIGNATURE UNVEILS THREE DISTINCT IMMUNE-METABOLIC REWIRING PATTERNS CONSERVED ACROSS DIVERSE TUMOR TYPES AND ASSOCIATED WITH OUTCOMES.DOCX [DATASET]
- Pedrosa, Leire
- Foguet, Carles
- Oliveres, Helena
- Archilla, Iván
- García de Herreros, Marta
- Rodríguez, Adela
- Postigo, Antonio
- Benítez-Ribas, Daniel
- Camps, Jordi
- Cuatrecasas, Miriam
- Castells, Antoni
- Prat, Aleix
- Thomson, Timothy M.
- Maurel, Joan
- Cascante, Marta
Supplementary Table S4: Important features identified by One-way ANOVA and post-hoc analysis (Fisher’s LSD) comparing the expression of immune signatures in the IMMETCOLS Clusters., Existing immune signatures and tumor mutational burden have only modest predictive capacity for the efficacy of immune check point inhibitors. In this study, we developed an immune-metabolic signature suitable for personalized ICI therapies. A classifier using an immune-metabolic signature (IMMETCOLS) was developed on a training set of 77 metastatic colorectal cancer (mCRC) samples and validated on 4,200 tumors from the TCGA database belonging to 11 types. Here, we reveal that the IMMETCOLS signature classifies tumors into three distinct immune-metabolic clusters. Cluster 1 displays markers of enhanced glycolisis, hexosamine byosinthesis and epithelial-to-mesenchymal transition. On multivariate analysis, cluster 1 tumors were enriched in pro-immune signature but not in immunophenoscore and were associated with the poorest median survival. Its predicted tumor metabolic features suggest an acidic-lactate-rich tumor microenvironment (TME) geared to an immunosuppressive setting, enriched in fibroblasts. Cluster 2 displays features of gluconeogenesis ability, which is needed for glucose-independent survival and preferential use of alternative carbon sources, including glutamine and lipid uptake/β-oxidation. Its metabolic features suggest a hypoxic and hypoglycemic TME, associated with poor tumor-associated antigen presentation. Finally, cluster 3 is highly glycolytic but also has a solid mitochondrial function, with concomitant upregulation of glutamine and essential amino acid transporters and the pentose phosphate pathway leading to glucose exhaustion in the TME and immunosuppression. Together, these findings suggest that the IMMETCOLS signature provides a classifier of tumors from diverse origins, yielding three clusters with distinct immune-metabolic profiles, representing a new predictive tool for patient selection for specific immune-metabolic therapeutic approaches., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/331398
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331398
HANDLE: http://hdl.handle.net/10261/331398
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331398
PMID: http://hdl.handle.net/10261/331398
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331398
Ver en: http://hdl.handle.net/10261/331398
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331398
Buscador avanzado