Resultados totales (Incluyendo duplicados): 33526
Encontrada(s) 3353 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330339
Dataset. 2022

SUPPORTING INFORMATION FOR ACETYLIDES FOR THE PREPARATION OF PHOSPHORESCENT IRIDIUM(III) COMPLEXES: IRIDAOXAZOLES AND THEIR TRANSFORMATION INTO HYDROXYCARBENES AND N,C(SP3),C(SP2),O-TETRADENTATE LIGANDS

  • Benítez, María
  • Buil, María L.
  • Esteruelas, Miguel A.
  • Izquierdo, Susana
  • Oñate, Enrique
  • Tsai, Jui-Yi
General information for the experimental section, structural analysis of complexes 2, 7, 8, and 10, computational details, energies of optimized structures, NICS scan curve for complex 2, induced current density (ACID) of complex 2, NBO7 analysis and π NBO orbitals for complexes OsH{κ2-C,O-[C(Ph)NC(CH3)O]}(IPr)(PiPr3) and 3, observed and calculated UV-vis spectra of complexes 2-4 and 6-10, analysis of computed UV/Vis data, theoretical analysis of molecular orbitals, spin density distribution for the optimized triplet T1, cyclic voltammograms of complexes 2 and 6-10, normalized excitation and emission spectra of complexes 2-4 and 6-10, and NMR spectra. (PDF). Atomic coordinates of complexes 2–10 (XYZ)., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330339
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330339
HANDLE: http://hdl.handle.net/10261/330339
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330339
PMID: http://hdl.handle.net/10261/330339
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330339
Ver en: http://hdl.handle.net/10261/330339
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330339

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330341
Dataset. 2022

SUPPORTING INFORMATION THERMAL RECTIFICATION AND THERMAL LOGIC GATES IN GRADED ALLOY SEMICONDUCTORS

  • Ng, Ryan C.
  • Castro-Álvarez, Alejandro
  • Sotomayor Torres, C. M.
  • Chávez-Angel, Emigdio
4 pages. -- Table S1: Summary of COMSOL parameters. -- Table S2: Truth table for an AND-gate based on a pure Si slab. -- Table S3: Truth table for an AND-gate based on a pure Ge slab. -- Figure S1: Temperature and thermal conductivity distributions along a Si(1−x)Gex slab for different spatial atomic distributions. -- Figure S2: Thermal conductivity distributions in various alloy systems. -- Figure S3: Comparison of rectification in various alloy systems. -- Figure S4: Comparison of the effectiveness as x is varied., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330341
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330341
HANDLE: http://hdl.handle.net/10261/330341
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330341
PMID: http://hdl.handle.net/10261/330341
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330341
Ver en: http://hdl.handle.net/10261/330341
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330341

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330342
Dataset. 2022

SUPPORTING INFORMATION: CHLORIDE BINDING PROPERTIES OF A MACROCYCLIC RECEPTOR EQUIPPED WITH AN ACETYLIDE GOLD(I) COMPLEX: SYNTHESIS, CHARACTERIZATION, REACTIVITY, AND CYTOTOXICITY STUDIES

  • Rivoli, Andrea
  • Aragay, Gemma
  • Gimeno, M. Concepción
  • Ballester, Pablo
The supporting information: Scheme S1. Synthesis of compound 4; Scheme S2. Synthesis of compound 2; Scheme S3; Synthesis of compound 2Au; Scheme S4. Synthesis of (tht)AuCl; Scheme S5. Synthetic scheme for the preparation of the model p-ethynyl-toluene gold(I) complex 6Au; Scheme S6. Reaction of 6Au with an excess of TBACl to produce the dimeric anionic species [7Au]−; Scheme S7. Scheme of the side reaction of the chloride complex of 2Au with and excess of TBACl to produce chloride complexes of the anionic dimer [8Au]−. Table S1: Table of induced chemical shifts of the titration of 2Au with TBACl; Table S2: Table of induced chemical shifts of 2 upon addition of TBACl; Table S3: Table of induced chemical shifts of 3 upon addition of TBACl; Table S4: Binding constants (K) and the thermodynamic parameters (ΔH, TΔS and ΔG in Kcalꞏmol−1) obtained from the ITC titration experiments of TBACl and 2, 3 and 2Au at 288 K in acetone. Figures S1–S6: NMR characterization of compound 4. Figures S7–S13: NMR characterization of compound 2. Figures S14–S18: NMR characterization of compound 2Au; Figures S19–S21: NMR characterization of compound 6Au; Figures S22–S25: 1H NMR titrations of 2Au with TBACl in DCM: spectra and fit of the chemical shifts; Figures S26–S29: 1H NMR titrations of 2 with TBACl in DCM: spectra and fit of the chemical shifts; Figures S30–S33: 1H NMR titrations of 3 with TBACl in DCM: spectra and fit of the chemical shifts; Figures S34 and S35: 1H NMR titrations of 2 and 3 with TBACl in acetone; Figure S36–S38: Isothermal Titration Calorimetry experiments in acetone. Figure S39: Thermodynamic parameters (ΔH, TΔS and ΔG in Kcalꞏmol−1) of the 1:1 complexes of 2Au, 2 and 3 with TBACl in acetone; Figures S40–S46: NMR experiments from the study of the formation of the anionic-bis(alkynyl)gold(I) complexes [7Au]− and [8Au]−; Figures S47–S50: 1H NMR Pair-wise competitive experiments., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330342
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330342
HANDLE: http://hdl.handle.net/10261/330342
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330342
PMID: http://hdl.handle.net/10261/330342
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330342
Ver en: http://hdl.handle.net/10261/330342
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330342

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330422
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. MATER., DOI: 10.1002/ADMA.202108352 UNRAVELING HEAT TRANSPORT AND DISSIPATION IN SUSPENDED MOSE2 FROM BULK TO MONOLAYER

  • Saleta Reig, David
  • Varghese, Sebin
  • Farris, Roberta
  • Block, Alexander
  • Mehew, Jake D.
  • Hellman, Olle
  • Woźniak, Pawel
  • Sledzinska, Marianna
  • Sachat, Alexandros el
  • Chávez-Angel, Emigdio
  • Valenzuela, Sergio O.
  • Hulst, Niek F. van
  • Ordejón, Pablo
  • Zanolli, Zeila
  • Sotomayor Torres, C. M.
  • Verstraete, Matthieu J.
  • Tielrooij, Klaas-Jan
21 pages. -- PDF file includes: 1 Simulation of Raman thermometry experiment. -- 2 Exfoliated MoSe2 flakes on PDMS and thickness determination. -- 3 Raman spectra as a function of incident laser power on suspended MoSe2 crystals. -- 4 Temperature calibrations at suspended and supported regions of MoSe2 crystals. -- 5. Thermal transport simulation. -- 6 Experimental approach: eliminating substrate-induced artifacts. -- 7 Experiment vs literature. -- 8 Phonon dispersions for different MoSe2 layers. -- 9 Theory vs literature. -- 10 Calculated temperature dependence of thermal conductivity. -- 11 Calculated in-plane thermal conductivity of MoSe2, WSe2 and MoS2. -- 12 Phonon lifetimes for monolayer and bulk MoSe2. -- 13 Cumulative spectral conductivity ratios at 300 K. -- 14 Determination of laser spot size. -- Table S1: Optical absorption, power and temperature coefficients., ICN2 was supported by the Severo Ochoa program from Spanish MINECO Grant No. SEV-2017-0706 and Generalitat de Catalunya (CERCA program and Grant 201756R1506)., Peer reviewed

DOI: http://hdl.handle.net/10261/330422
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330422
HANDLE: http://hdl.handle.net/10261/330422
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330422
PMID: http://hdl.handle.net/10261/330422
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330422
Ver en: http://hdl.handle.net/10261/330422
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330422

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330426
Dataset. 2022

SUPPORTING INFORMATION: UNVEILING THE COMPLEX MAGNETIZATION REVERSAL PROCESS IN 3D NICKEL NANOWIRE NETWORKS

  • Ruiz-Clavijo, Alejandra
  • Caballero-Calero, Olga
  • Navas, David
  • Ordoñez Cencerrado, Amanda
  • Blanco-Portals, Javier
  • Peiró, Francesca
  • Sanz González, Ruy
  • Martín-González, Marisol
Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330426
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330426
HANDLE: http://hdl.handle.net/10261/330426
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330426
PMID: http://hdl.handle.net/10261/330426
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330426
Ver en: http://hdl.handle.net/10261/330426
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330426

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330428
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. MATER. TECHNOL., DOI: 10.1002/ADMT.202101450 A NOVEL RATIOMETRIC FLUORESCENT APPROACH FOR THE MODULATION OF THE DYNAMIC RANGE OF LATERAL FLOW IMMUNOASSAYS

  • Sena-Torralba, Amadeo
  • Torné Morató, Helena
  • Parolo, Claudio
  • Ranjbar, Saba
  • Farahmand Nejad, Mohammad Amin
  • Álvarez-Diduk, Ruslan
  • Idili, Andrea
  • Hormozi-Nezhad, Mohammad Reza
  • Merkoçi, Arben
8 pages. -- Table S1. Paper-based ratiometric approaches. -- Figure S1. (A) Picture of the ratiometric LFA strip (with 0.1% 450-NBs fixed on TL) before performing the assay for H-IgG detection. (B) Picture of the same LFA strip after performing the assay.. -- Figure S2. (A) Open the Image J software. (B) Open the file containing the photo of the strip, select an area of the detection zone with the straight command and plot the RGB profile. -.- -- Figure S3. (A) Picture of the LFA strips with 0.00% 450-NBs in TL, after performing the calibration curve for the detection of H-IgG (10 to 1000 ng mL-1). (B) Quantitative evaluation of the HUE in TL using the HSB stack. -- Table S2. Data of the 4 parameter logistic (sigmoidal) equations related to the calibration curves present in Figure 4B. -- Table S3. Data of the 4 parameter logistic (sigmoidal) equations related to the calibration curves present in Figure 4C. -- Table S4. Data of the 4 parameter logistic (sigmoidal) equations related to the calibration curves present in Figure 5. -- Figure S4. Comparison of the normalized signal achieved on the TL when evaluating a blank PBS and serum sample (without the spiked H-IgG), with the ratiometric (0.03, 0.1% 450-NBs) and non-ratiometric (0 % 450-NBs) LFA strips. -- Table S5. Comparison of the analytical properties of our approach with the already reported ones for H-IgG detection., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330428
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330428
HANDLE: http://hdl.handle.net/10261/330428
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330428
PMID: http://hdl.handle.net/10261/330428
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330428
Ver en: http://hdl.handle.net/10261/330428
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330428

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330430
Dataset. 2022

SUPPORTING INFORMATION COLORATION IN SUPRAPARTICLES ASSEMBLED FROM POLYHEDRAL METALORGANIC FRAMEWORK PARTICLES

  • Wang, Junwei
  • Liu, Yang
  • Bleyer, Gudrun
  • Goerlitzer, Eric S. A.
  • Englisch, Silvan
  • Przybilla, Thomas
  • Mbah, Chrameh Fru
  • Engel, Michael
  • Spiecker, Erdmann
  • Imaz, Inhar
  • Maspoch, Daniel
  • Vogel, Nicolas
28 pages. -- PDF file includes: Experimental Procedures; Simulation of hard polyhedral particles in spherical confinement. -- Figure S1. (a) Scheme and FESEM image of an as-synthesized C-ZIF-8 particle, highlighting the edge length (f). Scale bar: 500 nm. (b) Left: Representative FE-SEM image of C-ZIF-8 particles. Scale bar: 1 μm. Middle: Size-distribution histogram of as-synthesized C-ZIF-8 particles with a mean f of 191 ± 9 nm. Right: PXRD patterns of simulated (black) and as-synthesized C-ZIF-8 particles (red). -- Figure S2. (a) Scheme and FESEM image of an as-synthesized TRD-ZIF-8 particle, highlighting the particle size (f) and edge length (x). Scale bar: 500 nm. (b-e) TRD ZIF-8 particles (t= 0.68) with a mean f of 181 ± 9 nm (b), 198 ± 10 nm (c), 229 ± 9 nm (d) and 247 ± 10 nm (e). Left: Representative FE-SEM images; Middle: Size-distribution histograms; and Right: PXRD patterns of simulated (black) and assynthesized TRD-ZIF-8 particles (red). -- Figure S3. (a) Scheme and FESEM image of an as-synthesized RD-ZIF-8 particle, highlighting the particle size (f). Scale bar: 500 nm. (b-e) RD ZIF-8 particles with a mean f of 246 ± 12 nm (b), 267 ±12 nm (c), and 293 ± 13 nm (d). Left: Representative FE-SEM images; Middle: Size-distribution histograms; and Right: PXRD patterns of simulated (black) and as-synthesized RD-ZIF-8 particles (red). -- Figure S4. (a) Scheme and FESEM image of an as-synthesized O-UiO-66 particle, highlighting the edge length of particles (f). Scale bar: 500 nm. O-UiO-66 particles a mean f of 194 ± 12 nm (b), 238 ± 13 nm (c), and 247 ± 13 nm (d). Left: Representative FE-SEM images; Middle: Size-distribution histograms; and Right: PXRD patterns of simulated (black) and as-synthesized RD-ZIF-8 particles (red). -- Figure S5. Representative FESEM images of polydisperse C-ZIF-8 (a) and O-UiO-66 (b) supraparticles prepared by shaking emulsifying, with a size of 21 ± 5.6 μm (26% polydispersity) and 9.9 ± 3.4 μm (34% polydispersity, approximately 500 counts), respectively. -- Figure S6. Representative FESEM images of monodispersed RD-ZIF-8 (a) and TRD-ZIF-8 (b) supraparticles prepared using a droplet-based microfluidic device, with a size of 20.1 ± 0.6 μm (3% polydispersity) and 10.4 ± 0.5 μm (5% polydispersity, approximately 200 counts), respectively. -- Figure S7. Transmissive X-ray image of MOF supraparticles of a) RD-ZIF-8, showing few onion-like layers near the surface; b) TRD-ZIF-8, showing thick onion-like layers, as well as some lattice fringes; c) C-ZIF-8, showing thick onion-like layers, as well as some lattice fringes; and d) O-UiO-66 particles, showing only little onion-like layer structures. -- Figure S8. Cross-section of RD-ZIF-8 supraparticles revealed by focused-ion beam milling. -- Figure S9. Cross-section of TRD-ZIF-8 supraparticles revealed by focused-ion beam milling. -- Figure S10. Cross-section of C-ZIF-8 supraparticles revealed by focused-ion beam milling. -- Figure S11. Cross-section of O-UiO-66 supraparticles revealed by focused-ion beam milling. -- Figure S12. A TRD-ZIF-8 supraparticle exhibiting local five-fold symmetric surface pattern, marked with blue colour. -- Figure S13. Cross-sectional images of simulated supraparticles of hard polyhedra in spherical confinement. -- Figure S14. Photograph of the self-assembled superstructures resulting from the centrifugation of different aqueous colloidal MOF particles (from left to right: RD-ZIF-8, TRD-ZIF-8, C-ZIF-8 and OUiO-66). -- Figure S15. Relationship between MOF particle size of different shapes and layer distance. -- Figure S16. Optical setup to measure reflectance spectra directly from MOF supraparticles suspended in liquid in a glass vial. -- Figure S17. Angle-dependent reflection spectra of four types of MOF supraparticles measured directly from liquid suspension. -- Figure S18. Shift of the reflectance peak with increasing viewing angle for four types of MOF supraparticles. -- Figure S19. Buckled RD-ZIF-8 supraparticles. 1.0 mL 1 wt% Lutensol TO8 surfactant is added to 0.5 mL 2 wt% RD-ZIF-8 particle dispersion. -- Figure S20. Angle-dependent reflection spectra of buckled MOF supraparticles measured directly from suspension. -- Figure S21. Hypothesized surface grating effects of MOF supraparticles. -- Figure S22. Buckled RD-ZIF-8 supraparticles exhibit ordered surface features, visualized in scanning electron microscopy. -- Figure S23. The surface packing of RD ZIF-8 supraparticles shows a sawtooth groove profile, as seen in scanning electron microscopy., ICN2 is supported by the Severo Ochoa program from the Spanish MINECO (Grant No. SEV-2017-0706)., Peer reviewed

DOI: http://hdl.handle.net/10261/330430
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330430
HANDLE: http://hdl.handle.net/10261/330430
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330430
PMID: http://hdl.handle.net/10261/330430
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330430
Ver en: http://hdl.handle.net/10261/330430
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330430

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330431
Dataset. 2022

SUPPLEMENTARY MATERIALS FOR DIRECT MEASUREMENT OF NANOSCALE FILAMENTARY HOT SPOTS IN RESISTIVE MEMORY DEVICES

  • Deshmukh, Shishir
  • Muñoz Rojo, Miguel
  • Yalon, Eilam
  • Vaziri, Sam
  • Köroğlu, Çağıl
  • Islam, Raisul
  • Iglesias, Ricardo A.
  • Saraswat, Krishna
  • Pop, Eric
This PDF file includes: Sections S1 to S10 Figs. S1 to S9 Tables S1 to S3 References, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330431
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330431
HANDLE: http://hdl.handle.net/10261/330431
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330431
PMID: http://hdl.handle.net/10261/330431
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330431
Ver en: http://hdl.handle.net/10261/330431
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330431

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330434
Dataset. 2022

SUPPORTING INFORMATION NANOSCALE HEAT TRANSPORT ANALYSIS BY SCANNING THERMAL MICROSCOPY: FROM CALIBRATION TO HIGH-RESOLUTION MEASUREMENTS

  • Vera-Londono, Liliana
  • Ruiz-Clavijo, Alejandra
  • Pérez Taborda, Jaime Andrés
  • Martín-González, Marisol
Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330434
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330434
HANDLE: http://hdl.handle.net/10261/330434
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330434
PMID: http://hdl.handle.net/10261/330434
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330434
Ver en: http://hdl.handle.net/10261/330434
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330434

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330437
Dataset. 2022

TABLE_1_OCEAN ACIDIFICATION RESEARCH IN THE MEDITERRANEAN SEA: STATUS, TRENDS AND NEXT STEPS.XLSX

  • El Rahman Hassoun, Abed
  • Bantelman, Ashley
  • Canu, Donata
  • Corneau, Steeve
  • Galdies, Charles
  • Gattuso, Jean-Pierre
  • Giani, Michele
  • Grelaud, Michael
  • Hendriks, Iris E.
  • Ibello, Valeria
  • Idrissi, Mohammed
  • Krasakopoulou, Evangelia
  • Shaltout, Nayrah
  • Solidoro, Cosimo
  • Swarzenski, Peter W.
  • Ziveri, Patrizia
1 table. -- Excel file includes multiple sheets. -- Original file: contains the originally extracted articles from the OA-ICC database. it contains 564 items with many duplications and articles not related to the Mediterranean. -- Edited file: Missing items from the OA-ICC database (without key) were added. The duplications, non-Mediterranean and non-existent items were removed. We have 534 items as a final outcome., Ocean acidification (OA) is a serious consequence of climate change with complex organism-to-ecosystem effects that have been observed through field observations but are mainly derived from experimental studies. Although OA trends and the resulting biological impacts are likely exacerbated in the semi-enclosed and highly populated Mediterranean Sea, some fundamental knowledge gaps still exist. These gaps are at tributed to both the uneven capacity for OA research that exists between Mediterranean countries, as well as to the subtle and long-term biological, physical and chemical interactions that define OA impacts. In this paper, we systematically analyzed the different aspects of OA research in the Mediterranean region based on two sources: the United Nation’s International Atomic Energy Agency’s (IAEA) Ocean Acidification International Coordination Center (OA-ICC) database, and an extensive survey. Our analysis shows that 1) there is an uneven geographic capacity in OA research, and illustrates that both the Algero-Provencal and Ionian sub-basins are currently the least studied Mediterranean areas, 2) the carbonate system is still poorly quantified in coastal zones, and long-term time-series are still sparse across the Mediterranean Sea, which is a challenge for studying its variability and assessing coastal OA trends, 3) the most studied groups of organisms are autotrophs (algae, phanerogams, phytoplankton), mollusks, and corals, while microbes, small mollusks (mainly pteropods), and sponges are among the least studied, 4) there is an overall paucity in socio-economic, paleontological, and modeling studies in the Mediterranean Sea, and 5) in spite of general resource availability and the agreement for improved and coordinated OA governance, there is a lack of consistent OA policies in the Mediterranean Sea. In addition to highlighting the current status, trends and gaps of OA research, this work also provides recommendations, based on both our literature assessment and a survey that targeted the Mediterranean OA scientific community. In light of the ongoing 2021-2030 United Nations Decade of Ocean Science for Sustainable Development, this work might provide a guideline to close gaps of knowledge in the Mediterranean OA research., Systematic Review Registration https://www.oceandecade.org/, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330437
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330437
HANDLE: http://hdl.handle.net/10261/330437
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330437
PMID: http://hdl.handle.net/10261/330437
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330437
Ver en: http://hdl.handle.net/10261/330437
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330437

Buscador avanzado