Resultados totales (Incluyendo duplicados): 46469
Encontrada(s) 4647 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359066
Dataset. 2024

SUPPORTING INFORMATION: OPTIMO-LDLR: AN INTEGRATED IN SILICO MODEL WITH ENHANCED PREDICTIVE POWER FOR LDL RECEPTOR VARIANTS, UNRAVELING HOT SPOT PATHOGENIC RESIDUES

  • Larrea, Asier
  • Sasiain, Iñaki
  • Jebari-Benslaiman, Shifa
  • Galicia-García, Unai
  • Uribe, Kepa B.
  • Benito-Vicente, Asier
  • Gracia-Rubio, Irene
  • Bediaga, Harbil
  • Arrasate, Sonia
  • Cenarro, Ana
  • Civeira, Fernando;
  • González-Díaz, Humberto
  • Martín, César
Supplementary Methods: Excel Solver Evolutionary Algorithm (ESEA). Table S1: Predictions of analyzed software and new models about ClinVar database, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359066
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359066
HANDLE: http://hdl.handle.net/10261/359066
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359066
PMID: http://hdl.handle.net/10261/359066
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359066
Ver en: http://hdl.handle.net/10261/359066
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359066

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359067
Dataset. 2021

SUPPLEMENTARY MATERIAL STRUCTURE AND TROPHIC NICHES IN MOBILE EPIFAUNA ASSEMBLAGES ASSOCIATED WITH SEAWEEDS AND HABITATS OF SYNGNATHID FISHES IN CÍES ARCHIPELAGO (ATLANTIC ISLANDS MARINE NATIONAL PARK, NORTH WEST IBERIA)

  • Piñeiro-Corbeira, Cristina
  • Iglesias, Laura
  • Nogueira, Raquel
  • Campos, Sara
  • Jiménez, Arturo
  • Regueira, Marcos
  • Barreiro, Rodolfo
  • Planas, Miguel
5 tables, 3 figures, Supplementary Table 1. Conversion factors applied to δ15N and δ13C for lipid normalization in taxa associated to seaweeds on Cíes Archipelago. (-) normalization not required.-- Supplementary Table 2. Relative abundances (%) in epifauna identified in 2017-2018 (spring, summer and autumn) on canopy-forming seaweeds in Cíes Archipelago. * indicates <0.01%.-- Supplementary Table 3. Summary table for Multipatt results (p-value) showing taxa significantly associated to Year (2017 – 2018) and Season (Sp – Spring; Su – Summer; Au – Autumn).-- Supplementary Table 4. Taxa richness (S), Shannon diversity (H’), Simpson dominance (D’), and Pielou’s evenness (J’) in epifaunal assemblages associated to Codium spp. and Gongolaria baccata.-- Supplementary Table 5. Summary table for Multipatt results (p-value) showing taxa significantly associated to seaweed (Codium spp and G. baccata) assemblages seasonally sampled from Summer-2017 (Su17) to Autumn-2018 (Au18).-- Supplementary Table 6. Syngnathid specimens (recaptured specimens not included) collected in 2017 and 2018 (spring, summer and autumn) by UVC on Cíes Archipelago.-- Supplementary Figure 1. Two-dimensional non-metric multidimensional scaling (NMDS; Bray–Curtis similarities) plot of the variation in stable isotopes (δ13C and δ15N) in syngnathids (H. guttulatus, E. aequoreus and S. acus) collected in spring, summer and autumn (2017 and 2018).-- Supplementary Figure 2. Two-dimensional convex hulls of the variation in δ13C and δ15N in epifauna community and syngnathids, considering Year (2017 – 2018), functional groups (FG), and main taxa (Taxa).-- Supplementary Figure 3. Seasonal fluctuations of epifaunal taxa (bars; relative abundance in taxa contributing to syngnathid feeding regimes) in canopy-forming assemblages (Codium spp. and Gongolaria baccata), and syngnathids abundance (dotted lines) on Cíes Archipelago in surveys carried out in 2017 – 2018, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359067
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359067
HANDLE: http://hdl.handle.net/10261/359067
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359067
PMID: http://hdl.handle.net/10261/359067
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359067
Ver en: http://hdl.handle.net/10261/359067
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359067

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359154
Dataset. 2021

SEA TEMPERATURE EFFECTS ON DEPTH USE AND HABITAT SELECTION IN A MARINE FISH COMMUNITY [DATASET]

  • Freitas, Carla
  • Villegas-Ríos, David
  • Moland, Even
  • Olsen, Esben Moland
4 files, 1. Understanding the responses of aquatic animals to temperature variability is essential to predict impacts of future climate change and to inform conservation and management. Most ectotherms such as fish are expected to adjust their behaviour to avoid extreme temperatures and minimize acute changes in body temperature. In coastal Skagerrak, Norway, sea surface temperature (SST) ranges seasonally from 0 to over 20 °C, representing a challenge to the fish community which includes both cold-, cool- and warm-water affinity species. 2. By acoustically tracking 111 individuals of Atlantic cod (Gadus morhua), pollack (Pollachius pollachius) and ballan wrasse (Labrus bergylta) in 2015 - 2018, we examined how coexisting species within a fish community adjusted their behaviour (i.e. vertical distribution in the water column and habitat selection) to cope with the thermal variation. 3. Mixed-effect models showed that thermal preference was a main driver of behaviour and habitat use of the fish community in a southern Norwegian fjord. Cod used colder waters, compared with pollack and ballan wrasse. Increases in SST during summer were associated with the use of deeper, colder waters by cod, especially by larger individuals, and conversely with the occupancy of shallower areas by pollack and ballan wrasse. During winter, when SST dropped and the thermal stratification reversed, pollack and ballan wrasse moved to deeper, relatively warmer areas, while cod selected shallower, colder habitats. Though habitat selection was affected by temperature, species-specific habitat selection was observed even when temperature was similar throughout habitats. 4. This study shows how cohabiting fish species respond to thermal heterogeneity, suggesting that i) temperature regulates the access to the different depths and habitats and ii) behavioural plasticity may be an important factor for coping with temperature variability and potentially for adaptation to climate change, The Research Council of Norway, Award: 294926; European Union’s Horizon 2020, Award: 793627; Regionale forskningsfond Oslofjordfondet, Award: 272090, Peer reviewed

Proyecto: EC/H2020/793627
DOI: http://hdl.handle.net/10261/359154
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359154
HANDLE: http://hdl.handle.net/10261/359154
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359154
PMID: http://hdl.handle.net/10261/359154
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359154
Ver en: http://hdl.handle.net/10261/359154
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359154

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359207
Dataset. 2023

SUPPLEMENTARY MATERIALS FOR A MULTI-SPECIFIC, MULTI-AFFINITY ANTIBODY PLATFORM NEUTRALIZES SARBECOVIRUSES AND CONFERS PROTECTION AGAINST SARS-COV-2 IN VIVO

  • Burn Aschner, Clare
  • Muthuraman, Krithika
  • Kucharska, Iga
  • Cui, Hong
  • Prieto, Katherine
  • Nair, Manoj S.
  • Wang, Maple
  • Huang, Yaoxing
  • Christie-Holmes, Natasha
  • Poon, Betty
  • Lam, Jessica
  • Sultana, Azmiri
  • Kozak, Robert
  • Mubareka, Samira
  • Rubinstein, John L.
  • Rujas, Edurne
  • Treanor, Bebhinn
  • Ho, David D.
  • Jetha, Arif
  • Julien, Jean-Philippe
All data associated with this study are present in the paper or the Supplementary Materials. The electron microscopy maps have been deposited in the Electron Microscopy Data Bank (EMDB) with accession codes EMD-28067 (tri-specific MB, refinement with no symmetry) and EMD-28068 (tri-specific MB, octahedral symmetry). The crystal structure of 80 Fab–RBD has been deposited in the Protein Data Bank (PDB ID: 8DNN). Materials will be made available to the scientific community by contacting the corresponding author and completion of a materials transfer agreement. This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. This license does not apply to figures/photos/artwork or other content included in the article that is credited to a third party; obtain authorization from the rights holder before using this material., The PDF file includes: Supplementary Materials and Methods Figs. S1 to S10 Tables S1 to S3 Legend for data file S1 References (72–92) Other Supplementary Material for this manuscript includes the following: Data file S1 MDAR Reproducibility Checklist, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359207
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359207
HANDLE: http://hdl.handle.net/10261/359207
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359207
PMID: http://hdl.handle.net/10261/359207
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359207
Ver en: http://hdl.handle.net/10261/359207
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359207

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359221
Dataset. 2023

SUPPLEMENTARY MATERIAL AROMATIC PLANTS AND THEIR ASSOCIATED ARBUSCULAR MYCORRHIZAL FUNGI OUTCOMPETE TUBER MELANOSPORUM IN COMPATIBILITY ASSAYS WITH TRUFFLE-OAKS

  • Barou, Vasiliki
  • Rincón, Ana
  • Calvet, Cinta
  • Camprubí, Amelia
  • Parladé, Javier
Supplementary Material contains: Figures S1-S3, Tables S1-S6 and References. Figure S1: Stereomicroscope photographs of arbuscular mycorrhizal fungi (AMF) structures; Figure S2. Amplification plot of fungal ITS1 multicopy gene; Figure S3: Quercus ilex roots colonized by (a) Tuber melanosporum and (b) arbuscular mycorrhizal fungi, from co-cultured plants collected at the end of the experiment; Table S1: Physical-chemical properties of the soil used in the compatibility assays; Table S2: Primer pairs tested in this work; Table S3: Truffle-oak’s growth variables; Table S4: Medicinal and aromatic plants’ (MAPs) growth variables; Table S5: Quantification of arbuscular mycorrhizal (AM) extraradical mycelium in soils with truffle-oak growing together with AM lavender, sage, or thyme; Table S6: Percentage of arbuscular mycorrhizas (AM) in roots of MAPs growing alone or with truffle-oaks. References [66,67,68] are cited in here., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359221
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359221
HANDLE: http://hdl.handle.net/10261/359221
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359221
PMID: http://hdl.handle.net/10261/359221
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359221
Ver en: http://hdl.handle.net/10261/359221
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359221

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359226
Dataset. 2023

SUPPLEMENTARY MATERIAL ANTI‐TRYPANOSOMATIDAE ACTIVITY OF ESSENTIAL OILS AND THEIR MAIN COMPONENTS FROM SELECTED MEDICINAL PLANT

  • Bailén, María
  • Illescas, Cristina
  • Quijada, Mónica
  • Martínez-Díaz, Rafael A.
  • Ochoa, Eneko
  • Gómez-Muñoz, María Teresa
  • Navarro-Rocha, Juliana
  • González-Coloma, Azucena
Table S1. Plant species selected, localization, coordinates, and voucher numbers. Table S2. Chemical composition of the EOs from the most active species: L. luisieri (1 and 2) (Ll1 and Ll2), M. suaveolens (Ms); S. hybrid (Sh), S. montana (Sm), T. vulgaris (Tv), and T. zygis (Tz). RI, Retention index; RT, Retention time; HD, EOs obtained by hydrodistillation; SD, EOs obtained by steam distillation. Figure S1. Percentage of antiprotozoal activity of EOs obtained by hydrodistillation (HD) and steam distillation (SD) from L. x intermedia “Abrial” (Lab), L. x intermedia “Grosso” (Lg), L. x intermedia “Super” (Lsu), L. lanata (Ll), L. angustifolia (La), L. mallete (Lm), T. mastichina (Tm), O. virens (Ov), S. blancoana (Sb), S. officinalis (So), S. sclarea (Ss), R. officinalis (Ro), S. chamaecyparissus (Sc), T. vulgare (Tav), D. graveolens (Dg). A. Anti-Leishmania activity. B. Anti-Phytomonas activity of EOs. Figure S2. Chromatograms of the most active species EOs: L. luisieri (1 and 2) (Ll1 and Ll2), M. suaveolens (Ms); S. hybrid (Sh), S. montana (Sm), T. vulgaris (Tv), and T. zygis (Tz); HD, EOs obtained by hydrodistillation; SD, EOs obtained by steam distillation., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359226
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359226
HANDLE: http://hdl.handle.net/10261/359226
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359226
PMID: http://hdl.handle.net/10261/359226
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359226
Ver en: http://hdl.handle.net/10261/359226
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359226

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359229
Dataset. 2023

ADDITIONAL FILE 1 BIOCHAR FROM GRAPE POMACE, A WASTE OF VITIVINICULTURAL ORIGIN, IS EFFECTIVE FOR ROOT-KNOT NEMATODE CONTROL

  • Martínez-Gómez, Ángela
  • Andrés, María Fé
  • Barón-Sola, Ángel
  • Díaz-Manzano, Fernando E.
  • Yousef, Ibraheem
  • Mena, Ismael F.
  • Díaz, Elena
  • Gómez-Torres, Óscar
  • González-Coloma, Azucena
  • Hernández, Luis E.
  • Escobar, Carolina
pH values of different dilutions of the aqueous extracts (BC350AE and BC700AE) obtained from washing BC350 and BC700 (3% (w/v) with distilled water), respectively, for 24 h. Figure S1. SR-FTIR spectroscopy of grape pomace (GP) and biochars prepared at 350 °C and 700 °C (BC350, BC700, respectively). Full 2nd derivative spectra (wavenumber range between 3100 and 900 cm−1) along with the first two main principal components (PC-1 and PC-2) for different wavenumber ranges, which explain the largest contributions of signal shifts between samples. Numbers in red indicate the wavenumber values of the most representative peaks. Figure S2. SR-FTIR spectroscopy of grape pomace (GP), washed (BC350W) and unwashed (BC350) biochar prepared at 350 °C, and BC350 aqueous extract (BC350AE). Full 2nd derivative spectra (wavenumber range between 3100 and 900 cm−1) along with the first two main principal components (PC-1 and PC-2) for different wavenumber ranges, which explain the largest contributions of signal shifts between samples. Numbers in red indicate the wavenumber values of the most representative peaks. Figure S3. SR-FTIR spectroscopy of grape pomace (GP), washed (BC700W) and unwashed (BC700) biochar prepared at 700 °C, and BC700 aqueous extract (BC700AE). Full 2nd derivative spectra (wavenumber range between 3100 and 900 cm−1) and along with the first two main principal components (PC-1 and PC-2) for different wavenumber ranges, which explain the largest contributions of signal shifts between samples. Numbers in red indicate the wavenumber values of the most representative peaks. Figure S4. Effect of different concentrations (3%, 1.5% and 0.75%) of the unwashed biochar obtained at 700 °C (BC700) on 3-week old tomato plants 24 h and 6 days after its transplantation into biochar-amended sandy soils. Figure S5. Effect of different concentrations (3%, 1.5% and 0.75%) of the unwashed biochar obtained at 350 °C (BC350) on roots and shoots of tomato plants 3 weeks after its transplantation into biochar-amended sandy soils. Figure S6. Effect of different concentrations of BC350W on the percentage of seed germination (a), number of leaves (b), shoot length (c), relative water content (RCW) (d) and total fresh biomass (f) of 6-week-old tomato plants. Means ± standard errors (n ≥ 8). Significant differences with respect to the control according to Mann–Whitney U test. ***p < 0.001; **p < 0.01., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359229
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359229
HANDLE: http://hdl.handle.net/10261/359229
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359229
PMID: http://hdl.handle.net/10261/359229
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359229
Ver en: http://hdl.handle.net/10261/359229
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359229

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359238
Dataset. 2023

INSECT ANTIFEEDANT BENZOFURANS FROM PERICALLIS SPECIE [DATASET]

  • Díaz, Carmen E.
  • Fraga, Braulio M.
  • Portero, Adriana G.
  • Brito, Iván
  • López-Balboa, Carmen
  • Ruiz-Vásquez, Liliana
  • González-Coloma, Azucena
Figures S1–S2: 1H-NMR and 13C-NMR of compound 1a; Figure S3: 13C-NMR of compound 2; Figures S4–S5: 13C-NMR of compounds 4–5; Figures S6–S7: 1H-NMR an 13C-NMR of compound 7a; Figures S8–S10: 13C-NMR of compounds 8–10; Figures S11–S20: 1H-NMR and 13C-NMR of compounds 11–14 and 15–16; Figure S21: 1H-NMR of compound 17; Figures S22–S27: 1H-NMR and 13C-NMR of compounds 18,18a and 19., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359238
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359238
HANDLE: http://hdl.handle.net/10261/359238
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359238
PMID: http://hdl.handle.net/10261/359238
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359238
Ver en: http://hdl.handle.net/10261/359238
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359238

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359240
Dataset. 2024

SUPPLEMENTARY MATERIALS FOR EARLY CORTICAL GABAERGIC INTERNEURONS DETERMINE THE PROJECTION PATTERNS OF L4 EXCITATORY NEURONS

  • Bragg-Gonzalo, Lorena
  • Aguilera, Alfonso
  • González-Arias, Candela
  • De León Reyes, Noelia S.
  • Sánchez-Cruz, Alonso
  • Carballeira, Paula
  • Leroy, Felix
  • Perea, Gertrudis
  • Nieto, Marta
This PDF file includes: Figs. S1 to S13., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359240
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359240
HANDLE: http://hdl.handle.net/10261/359240
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359240
PMID: http://hdl.handle.net/10261/359240
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359240
Ver en: http://hdl.handle.net/10261/359240
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359240

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359246
Dataset. 2023

INTERSTAGE SIMILARITIES IN HOST-PLANT PREFERENCE IN THE DIAMONDBACK MOTH (LEPIDOPTERA: PLUTELLIDAE) [DATASET]

  • Badenes-Pérez, Francisco Rubén
  • Heckel, David G.
Table S1: Test statistic and p-values of Kruskall–Wallis tests comparing differences in oviposition on four different oviposition substrates (cabbage, rape, pea, and aluminium foil) for the strains DBM-W, DBM-NOQA, DBM-C, and DBM-P of P. xylostella. The significance values have been adjusted by the Bonferroni correction for multiple tests. Significant p-values (p ≤ 0.05) are shown in bold type; Table S2: Comparison of the preference between abaxial and adaxial leaf surfaces among the three P. xylostella strains reared on cabbage (DBM-C), artificial diet (DBM-G88), and pea (DBM-P). Oviposition preference data were analyzed using a one-tailed, two-sample test of proportions (p ≤ 0.05) comparing the percentages of the total number of eggs laid on the abaxial side of leaves (n = 3–96, except in the case of C. papaya for DBM-C, where n = 2).; and Table S3: Total glucosinolate content (TOT) and content of aliphatic glucosinolates with sulfur-containing side chains (AS), other aliphatic glucosinolates (AO), benzenic glucosinolates (BEN), and indolic glucosinolates (IN) for each of the plant types tested (A). Glucosinolate richness (S), Shannon’s diversity index for the four glucosinolate classes (HA), Shannon’s diversity index for the relative concentrations of all individual glucosinolates (HB), and chemical complexity index for glucosinolates (CCI) for each of the plant types tested (B). Values based on means across replicates taken from Badenes-Pérez et al. 2020 [10]., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359246
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359246
HANDLE: http://hdl.handle.net/10261/359246
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359246
PMID: http://hdl.handle.net/10261/359246
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359246
Ver en: http://hdl.handle.net/10261/359246
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359246

Buscador avanzado