Resultados totales (Incluyendo duplicados): 34665
Encontrada(s) 3467 página(s)
Encontrada(s) 3467 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/200303
Dataset. 2020
GIFT DATABASE (2005-2015): HYDROGRAPHIC AND CARBON SYSTEM PARAMETERS IN THE STRAIT OF GIBRALTAR
- Huertas, I. Emma
- Flecha, Susana
- Makaoui, Ahmed
- Pérez, Fiz F.
This dataset is composed of 2 files: a database (in csv format) with 695 records of biogeochemical variables (temperature, salinity, oxygen, nutrients, pH and total alkalinity) analyzed in water samples collected at the GIFT time series and a Readme (txt) file that includes a short description of the variables provided., If the dataset is used, please consider citing Flecha et al., (2019) (doi: 10.1038/s41598-019-52084-x)., This data set includes recently published data used to assess the temporal evolution of pH in Atlantic and Mediterranean water masses exchanging at the Strait of Gibraltar (Long:-5.345, Lat: 36.137, Datum:WSG84) during the decade 2005-2015 and to calculate the magnitude of natural and anthropogenic components on total pH changes (Flecha et al., 2019).
The database provides measurements of carbon system parameters in water samples collected at 3 stations that form the marine time series GIFT during 26 oceanographic campaigns conducted over the decade 2005–2015. Geographic coordinates of sampling stations are provided. Some physical data (i.e. pressure, temperature and salinity) are also included.
During the cruises, a temperature and salinity profile in each station was obtained with a Seabird 911 Plus CTD probe connected to a rosette sampler. Conductivity measurements were converted into practical values of the salinity scale with the UNESCO equation (1986). Seawater was subsequently collected for biogeochemical analysis using Niskin bottles immersed in the oceanographic rosette at variable depths (from 5 to 8 levels) depending on the instant position of the interface between the Atlantic and Mediterranean flows that was identified by CTD profiles. The biogeochemical variables shown in the database are pH in total scale at 25 °C (pHT25), total alkalinity (AT), Dissolved Oxygen (DO) and inorganic nutrients (nitrate, NO3− and Silicate, SiO44−). pHT25 data were obtained by the spectrophotometric method with m-cresol purple as indicator (Clayton & Byrne 1993) with an addition of 0.0047 (DelValls & Dickson, 1998). Samples were taken directly from the oceanographic bottles in 10 cm path-length optical glass cells and measurements were carried out with a Shimadzu UV-2401PC spectrophotometer containing a 25 °C-thermostated cells holder. Samples for AT analysis were collected in 500-ml borosilicate bottles, and poisoned with 100 μl of HgCl2-saturated aqueous solution and stored until measurement in the laboratory. AT was measured by potential titration according to Mintrop et al. (2000) with a Titroprocessor (model Metrohm 794). DO concentration was obtained through automated potentiometric modification of the original Winkler method using the Titroprocessor. Upon collection, flasks were sealed, stored in darkness and measured within 24 h. Water samples (5 mL, two replicates) for inorganic nutrients determination were taken, filtered immediately (Whatman GF/F, 0.7 μm) and stored frozen for later analyses in the shore-based laboratory. Nutrients concentrations were measured with a continuous flow auto-analyzer using standard colorimetric techniques (Hansen & Koroleff 1999). More details on procedures and data structure are given in a single README file (txt). The data are provided as [space] delimitated plain text files., Plan Estatal de I+D+i, European Commission, CSIC. CARBOOCEAN (FP6-511176), SESAME (FP6-036949), CARBOCHANGE (FP7-264879), PERSEUS (FP7-287600), COMFORT (H2020-820989), CTM2006-28141-E/MAR, CTM2016-75487-R., 1 data csv‘GIFT_carbonparameteres_2005_2015.csv’ file and 1 readme.txt file., Peer reviewed
DOI: http://hdl.handle.net/10261/200303
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/200303
HANDLE: http://hdl.handle.net/10261/200303
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/200303
PMID: http://hdl.handle.net/10261/200303
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/200303
Ver en: http://hdl.handle.net/10261/200303
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/200303
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/200469
Dataset. 2020
THERMAL TOLERANCE OF HALOPHILA STIPULACEA IN ITS NATIVE AND EXOTIC DISTRIBUTIONAL RANGE [DATASET]
- Wesselmann, Marlene
- Anton, Andrea
- Duarte, Carlos M.
- Hendriks, Iris E.
- Agustí, Susana
- Savva, Ioannis
- Apostolaki, Eugenia T.
- Marbà, Núria
The dataset provides data on survival, rhizome elongation (cm day-1), recruitment rate (day-1), net population growth rate (day-1), gross primary production (GPP; mmol 02 day-1 gDW-1), respiration (R; mmol 02 day-1 gDW-1) and net production (NP; mmol 02 day-1 gDW-1) of exotic (Greece and Cyprus; Mediterranean) and native (Saudi Arabia; Red Sea) Halophila stipulacea populations exposed to 12 seawater temperature treatments ranging from 8 to 40°C., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/200469
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/200469
HANDLE: http://hdl.handle.net/10261/200469
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/200469
PMID: http://hdl.handle.net/10261/200469
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/200469
Ver en: http://hdl.handle.net/10261/200469
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/200469
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/200537
Dataset. 2020
A GLOBAL MONTHLY CLIMATOLOGY OF OCEANIC TOTAL DISSOLVED INORGANIC CARBON: A NEURAL NETWORK APPROACH [DATASET]
- Broullón, Daniel
- Pérez, Fiz F.
- Velo, Antón
- Hoppema, Mario
- Olsen, Are
- Takahashi, Taro
- Key, Robert M.
- Tanhua, Toste
- Santana-Casiano, Juana Magdalena
- Kozyr, Alex
The item is made of 6 files: 1) README.txt; 2) TCO2_NNGv2LDEO_climatology.nc contains the climatology of TCO2 centered in 1995 and computed with NNGv2LDEO in netcdf4 format; 3) pCO2_NNGv2LDEO_climatology.nc contains the climatology of pCO2 centered in 1995 and computed with NNGv2LDEO and NNGv2 of Broullón et al. (2019) in netcdf4 format ; 4) NNGv2LDEO.mat is the neural network object used to create the climatology of TCO2; 5) TCO2NNWOA13.mp4 is a video of the surface climatology, 3 vertical sections in the Pacific Ocean, Atlantic Ocean and Indian Ocean and, the variation in depth of one month (April); 6) Example.rar contains an example matrix of inputs and targets to the neural network, the NNGv2LDEO.mat and a MATLAB script to compute TCO2 with NNGv2LDEO, This research was supported by Ministerio de Educación, Cultura y Deporte (FPU grant FPU15/06026), Ministerio de Economía y Competitividad through the ARIOS (CTM2016-76146-C3-1-R) project co-funded by the Fondo Europeo de Desarrollo Regional 2014-2020 (FEDER) and EU Horizon 2020 through the AtlantOS project (grant agreement 633211), No
DOI: http://hdl.handle.net/10261/200537
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/200537
HANDLE: http://hdl.handle.net/10261/200537
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/200537
PMID: http://hdl.handle.net/10261/200537
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/200537
Ver en: http://hdl.handle.net/10261/200537
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/200537
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/201050
Dataset. 2020
MAXIMUM WATER ACTIVITY CORRESPONDING TO DIFFERENT ENZYME ACTIVITY AND SAMPLING SITES [DATASET]
- Gómez Fernández, Enrique J.
- Delgado Romero, José A.
- González Grau, Juan Miguel
Los datos pertenecen al trabajo: Gómez, E.J., Delgado, J.A., González, J.M. (2020) Environmental factors affect the response of microbial extracellular enzyme activity in soils when determined as a funciton of water availability and temperature. Ecology and Evolution (Artícle in press), RDA plot showing the correspondence of water activity giving the optimum enzyme activity and environmental parameters. Capital letters (in black) represent the sampled soils (G, Galicia, P, Aragón; S, Salamanca; C, Sevilla; T, Cádiz). Arrows represent the environmental variables (soil texture, sand and silt content) contributing significantly to explain the variability of water activity resulting in optimum enzyme activity. The distribution of enzyme activities are presented in red: Glu_20, glucosidase activity at 20ºC; Glu_60, glucosidase activity at 60ºC; Pho_20, phosphatase activity at 20ºC; Pho_60, phosphatase activity at 60ºC; Pro_20, protease activity at 20ºC; Pro_60, protease activity at 60ºC. Figure, This study was supported by funding through projects from the Spanish Ministry of Economy and Competitiveness (CGL2014-58762-P) and the Regional Government of Andalusia (RNM2529). These projects have been cofunded by FEDER funds., Peer reviewed
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
DOI: http://hdl.handle.net/10261/201050
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/201050
HANDLE: http://hdl.handle.net/10261/201050
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/201050
PMID: http://hdl.handle.net/10261/201050
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/201050
Ver en: http://hdl.handle.net/10261/201050
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/201050
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/201950
Dataset. 2020
QUALITATIVE CROP CONDITION SURVEY REVEALS SPATIOTEMPORAL PRODUCTION PATTERNS AND ALLOWS EARLY YIELD PREDICTION [DATASET]
- Beguería, Santiago
- Maneta, Marco P.
Dataset and code of the article., Reliable crop monitoring systems provide critical information to detect and track anomalies in the status of crops.
These systems are fundamental for the development of integrated methodologies that inform agricultural policy, market analysis, or producer decision-making.
They are also used in the development of early warning systems that permit to anticipate drought conditions and trigger action to mitigate short term food shortages or to stabilize the structure and pricing of agricultural markets.
Current efforts to develop crop monitoring systems exploit meteorological and crop growth models, and satellite imagery.
However, legacy sources of information such as operational crop rating surveys that have long and uninterrupted records receive less attention.
We argue that crop rating data, despite its subjective and non-quantitative nature, captures the complexities of assessing the 'status' of a crop better than any model or remote sensing retrieval.
This is because crop rating data naturally represents the broad expert knowledge of many individual surveyors spread throughout the country.
Crop rating surveys in effect constitute a sophisticated network of "humans as sensors" that provide consistent and accurate information on crop progress.
We analyze data from the USDA Crop Progress and Condition (CPC) survey between 1987 and 2019 for four major crops across the US (corn, soybeans, winter wheat, and upland cotton).
We show how the original qualitative data can be transformed into a continuous, probabilistic variable better suited to quantitative analysis, and demonstrate it can be used to monitor crop status and provide early predictions of crop yields., Peer reviewed
Proyecto: //
DOI: http://hdl.handle.net/10261/201950
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/201950
HANDLE: http://hdl.handle.net/10261/201950
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/201950
PMID: http://hdl.handle.net/10261/201950
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/201950
Ver en: http://hdl.handle.net/10261/201950
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/201950
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202010
Dataset. 2020
SUPPLEMENTARY INFORMATION OF "DISCRIMINATING MANAGEMENT STRATEGIES IN MODERN AND ARCHAEOLOGICAL DOMESTIC CAPRINES USING LOW-MAGNIFICATION AND CONFOCAL DENTAL MICROWEAR ANALYSES"
- Ibáñez-Estévez, Juan José
- Jiménez-Manchón, Sergio
- Blaise, Émilie
- Nieto-Espinet, Ariadna
- Valenzuela-Lamas, Silvia
Images of dental surfaces obtained from confocal microscope Plu Neos Sensofar, Dental Microwear Analysis (DMA) is currently used for obtaining information on diet of different animal species. Low-magnification Microwear Dental Analysis (LMDA) is a DMA technique based on the identification of microfeatures (pits and scratches) on the tooth enamel surface. During the last decade, Dental Microwear Texture Analysis (DMTA) has gained momentum as an alternative quantitative methodology thus offering more reliable and replicable results and allowing highlighting subtle dietary differences. In this paper we explore the capacities of LMDA and DMTA for discriminating flock managing strategies. Two groups of sheep that were fed differently during the last month of life, one roaming on rangeland, combining Mediterranean forest and meadows and the other on grassland were analysed. While LMDA did not allow discriminating both groups, DMTA showed significant differences between them. DMTA revealed good predictive capacity for the correct classification of the individuals grazing on grasslands, and a poor one for the ones grazing on rangeland, as some of them overlapped with the grassland group. The limitation for correctly classifying roaming individuals is probably explained by the variable composition of plants on rangeland. We used the classificatory rule obtained from the experimental program to classify two archaeological collections of caprines (sheep and goats), from two Iron Age sites from the north-east of the Iberian Peninsula: The Iberian site of El Turó de la Font de la Canya and the Greek colony of Empúries. Finally, we compared the results with those obtained in previous studies using low-magnification microwear techniques (LMDA). In this way, we show the potential of DMTA for discriminating between animal feeding strategies in the past., Peer reviewed
Proyecto: EC/H2020/716298
DOI: http://hdl.handle.net/10261/202010
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202010
HANDLE: http://hdl.handle.net/10261/202010
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202010
PMID: http://hdl.handle.net/10261/202010
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202010
Ver en: http://hdl.handle.net/10261/202010
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202010
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202255
Dataset. 2019
AMPHIBIAN CNR EXPERIMENTAL DATA MNZN-FERRITE-SANS PHYSREVB2019. AMPHIBIAN GNRL SIMULATED DATA MNZN-FERRITE-SANS PHYSREVB2019 [DATASET]
- Bersweiler, Mathias
- Bender, Philipp
- Vivas, Laura G.
- Albino, Martin
- Petrecca, Michele
- Mühlbauer, Sebastian
- Erokhin, Sergey
- Berkov, Dmitry
- Sangregorio, Claudio
- Michels, Andreas
- AMPHIBIAN Project ID:720853
Dataset description:
EXPERIMENTAL DATA
folder "XRD data" containes the XRD patterns of all the samples presented in the manuscript
folder "Magnetic data" containes the M(H) curves of all the samples presented in the manuscript measured at room temperature in a field range of � 5 T
folder "TEM data" containes the TEM images of all the samples presented in the manuscript
SIMULATED DATA
prb_mzfo_fig10.png
Microstructures used in the micromagnetic simulations. The volume fraction of the particle phase was set to 80% in all computations. The simulation volume approximately 300 � 300 � 300 nm^3 is constant in the simulations (mesh size: 4 nm).
prb_mzfo_fig11.png
Applied field dependence of the quantity |M|/M_s for different average particle sizes. ASCII data file for this data set is in "prb_mzfo_absm.dat", where the first column mu0H (mT) and the following ones are |M|/M_S for 14, 26, 38, 50, 62 and 74 nm crystallites systems correspondingly. Inset: Corresponding normalized magnetization curves. ASCII data file for this data set is in "prb_mzfo_mz.dat", where the first column mu0H (mT) and the following ones are M_z/M_s for 14, 26, 38, 50, 62 and 74 nm crystallites systems correspondingly.
prb_mzfo_fig12.png
Particle-size-dependent evolution of the parameter |M|/M_s for each magnetic particle as a function of the applied magnetic field. ASCII data file for this data set is in "prb_mzfo_absm14nmALLstep100.dat", "prb_mzfo_absm38nmALLstep5.dat" and "prb_mzfo_absm74nmALLstep1.dat" for for 14, 38, and 74 nm crystallites systems correspondingly. The first column mu0H (mT) and the following ones are |M|/M_s for every crystallite. Snapshots of spin structures at selected fields, where the largest deviations from the uniform magnetization state are observed., [EN] We report the results of an unpolarized small-angle neutron-scattering (SANS) study on Mn-Zn ferrite (MZFO) magnetic nanoparticles with the aim to elucidate the interplay between their particle size and the magnetization configuration. We study different samples of single-crystalline MZFO nanoparticles with average diameters ranging between 8 to 80 nm, and demonstrate that the smallest particles are homogeneously magnetized. However, with increasing nanoparticle size, we observe the transition from a uniform to a nonuniform magnetization state. Field-dependent results for the correlation function confirm that the internal spin disorder is suppressed with increasing field strength. The experimental SANS data are supported by the results of micromagnetic simulations, which confirm an increasing inhomogeneity of the magnetization profile of the nanoparticle with increasing size. The results presented demonstrate the unique ability of SANS to detect even very small deviations of the magnetization state from the homogeneous one., UE, programa H2020, Proyecto AMPHIBIAN n º 720853., Dataset description: >>> EXPERIMENTAL DATA folder "XRD data" containes the XRD patterns of all the samples presented in the manuscript folder "Magnetic data" containes the M(H) curves of all the samples presented in the manuscript measured at room temperature in a field range of � 5 T folder "TEM data" containes the TEM images of all the samples presented in the manuscript >>> SIMULATED DATA prb_mzfo_fig10.png Microstructures used in the micromagnetic simulations. The volume fraction of the particle phase was set to 80% in all computations. The simulation volume approximately 300 � 300 � 300 nm^3 is constant in the simulations (mesh size: 4 nm). prb_mzfo_fig11.png Applied field dependence of the quantity |M|/M_s for different average particle sizes. ASCII data file for this data set is in "prb_mzfo_absm.dat", where the first column mu0H (mT) and the following ones are |M|/M_S for 14, 26, 38, 50, 62 and 74 nm crystallites systems correspondingly. Inset: Corresponding normalized magnetization curves. ASCII data file for this data set is in "prb_mzfo_mz.dat", where the first column mu0H (mT) and the following ones are M_z/M_s for 14, 26, 38, 50, 62 and 74 nm crystallites systems correspondingly. prb_mzfo_fig12.png Particle-size-dependent evolution of the parameter |M|/M_s for each magnetic particle as a function of the applied magnetic field. ASCII data file for this data set is in "prb_mzfo_absm14nmALLstep100.dat", "prb_mzfo_absm38nmALLstep5.dat" and "prb_mzfo_absm74nmALLstep1.dat" for for 14, 38, and 74 nm crystallites systems correspondingly. The first column mu0H (mT) and the following ones are |M|/M_s for every crystallite. Snapshots of spin structures at selected fields, where the largest deviations from the uniform magnetization state are observed., Peer reviewed
Proyecto: EC/H2020/720853
DOI: http://hdl.handle.net/10261/202255
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202255
HANDLE: http://hdl.handle.net/10261/202255
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202255
PMID: http://hdl.handle.net/10261/202255
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202255
Ver en: http://hdl.handle.net/10261/202255
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202255
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202291
Dataset. 2019
AMPHIBIAN UCM EXPERIMENTAL DATA EPSILON SOLGEL RSCADV2019
- López-Sánchez, Jesús
- Serrano Rubio, Aída
- Campo, Ángel Adolfo del
- Abuín, M.
- Salas, Eduardo
- Muñoz-Noval, A.
- Castro, Germán R.
- de la Figuera, Juan
- Marco, J.F.
- Marín, Pilar
- Carmona, N.
- Rodríguez de la Fuente, Óscar
- AMPHIBIAN Project ID:720853
Peer reviewed
Proyecto: EC/H2020/720853
DOI: http://hdl.handle.net/10261/202291
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202291
HANDLE: http://hdl.handle.net/10261/202291
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202291
PMID: http://hdl.handle.net/10261/202291
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202291
Ver en: http://hdl.handle.net/10261/202291
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202291
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202300
Dataset. 2019
AMPHIBIAN CSIC EXPERIMENTAL DATA COFE2O4-PLD_APPLSURFSCI2019 [DATASET]
- Sánchez-Arenillas, M.
- Oujja, Mohamed
- Moutinho, Fernando
- de la Figuera, Juan
- Cañamares, María Vega
- Quesada, Adrián
- Castillejo, Marta
- Marco, J.F.
- AMPHIBIAN Project ID:720853
UE, programa H2020, Proyecto AMPHIBIAN n º 720853., Peer reviewed
Proyecto: EC/H2020/720853
DOI: http://hdl.handle.net/10261/202300
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202300
HANDLE: http://hdl.handle.net/10261/202300
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202300
PMID: http://hdl.handle.net/10261/202300
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202300
Ver en: http://hdl.handle.net/10261/202300
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202300
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202305
Dataset. 2020
SPEIBASE V.2.6 [DATASET]
- Beguería, Santiago
- Vicente Serrano, Sergio M.
- Reig-Gracia, Fergus
- Latorre Garcés, Borja
The Global 0.5° gridded SPEI dataset is made available under the Open Database License. Any rights in individual contents of the database are licensed under the Database Contents License. Users of the dataset are free to share, create and adapt under the conditions of attribution and share-alike. The Global SPEI database, SPEIbase, offers long-time, robust information on the drought conditions at the global scale, with a 0.5 degrees spatial resolution and a monthly time resolution. It has a multi-scale character, providing SPEI time-scales between 1 and 48 months. The Standardized Precipitatin-Evapotranspiration Index (SPEI) expresses, as a standardized variate (mean zero and unit variance), the deviations of the current climatic balance (precipitation minus evapotranspiration potential) with respect to the long-term balance. The reference period for the calculation, in the SPEIbase, corresponds to the whole study period. Being a standardized variate means that the SPEI condition can be compared across space and time. Calculation of the evapotranspiration potential in SPEIbase is based on the FAO-56 Penman-Monteith method. Data type: float; units: z-values (standard deviations). No land pixels are assigned a value of 1.0x10^30. In some rare cases it was not possible to achieve a good fit to the log-logistic distribution, resulting in a NAN (not a number) value in the database. Dimensions of the dataset: lon = 720; lat = 360; time = 1356. Resolution of the dataset: lon = 0.5º; lat = 0.5º; time = 1 month. Created in R using the SPEI package (http://cran.r-project.org/web/packages/SPEI)., Global gridded dataset of the Standardized Precipitation-Evapotranspiration Index (SPEI) at time scales between 1 and 48 months.-- Spatial resolution of 0.5º lat/lon.-- This is an update of the SPEIbase v2.4 (http://digital.csic.es/handle/10261/128892).-- What’s new in version 2.5: 1) Data has been extended to the period 1901-2015 (it was 1901-2014 in v 2.4), based on the CRU TS3.24.01 dataset. 2) A bug on versions 2.2 to 2.4 of the dataset has been corrected that prevented correctly reading the ETo data in mm/month-- For more details on the SPEI visit https://spei.csic.es/., This work was not supported by any external funding., No
Proyecto: //
DOI: http://hdl.handle.net/10261/202305, https://doi.org/10.20350/digitalCSIC/15555
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202305
HANDLE: http://hdl.handle.net/10261/202305, https://doi.org/10.20350/digitalCSIC/15555
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202305
PMID: http://hdl.handle.net/10261/202305, https://doi.org/10.20350/digitalCSIC/15555
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202305
Ver en: http://hdl.handle.net/10261/202305, https://doi.org/10.20350/digitalCSIC/15555
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/202305
Buscador avanzado