Resultados totales (Incluyendo duplicados): 34544
Encontrada(s) 3455 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/365041
Dataset. 2024

DATA FROM "VULNERABILITY OF MINERAL-ASSOCIATED SOIL ORGANIC CARBON TO CLIMATE IN GLOBAL DRYLANDS"

  • Díaz-Martínez, Paloma
  • Maestre, Fernando T.
  • Manzano Moreno, Eduardo
  • Plaza de Carlos, César
Data on soil organic carbon fractions in global drylands, European Research Council (ERC Grant agreement 647038 1004, BIODESERT).- Spanish Ministry of Science and Innovation (PID2020-116578RB-I00).- Generalitat Valenciana (CIDEGENT/2018/041), No

DOI: http://hdl.handle.net/10261/365041
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/365041
HANDLE: http://hdl.handle.net/10261/365041
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/365041
PMID: http://hdl.handle.net/10261/365041
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/365041
Ver en: http://hdl.handle.net/10261/365041
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/365041

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/311752
Dataset. 2022

DATASHEET_2_EXTRACELLULAR VESICLES FROM LISTERIA MONOCYTOGENES-INFECTED DENDRITIC CELLS ALERT THE INNATE IMMUNE RESPONSE.ZIP [DATASET]

  • Izquierdo-Serrano, Raúl
  • Fernández-Delgado, Irene
  • Moreno-Gonzalo, Olga
  • Martín-Gayo, Enrique
  • Calzada-Fraile, Diego
  • Ramírez-Huesca, Marta
  • Jorge, Inmaculada
  • Camafeita, Emilio
  • Abián, Joaquín
  • Vicente-Manzanares, Miguel
  • Veiga, Esteban
  • Vázquez, Jesús
  • Sánchez-Madrid, Francisco
Table S3: Protein quantification in total cell lysates Table S4: IPA analysis of total cell lysates: canonical pathways and diseases and functions category Table S5: Protein quantification in EVs Table S6: IPA analysis of EVs: diseases and functions category Table S7: Ubiquitinated and acetylated peptides in total cell lysates and EVs Table S8: Enrichment analysis of ubiquitinated and acetylated proteins, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/311752
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/311752
HANDLE: http://hdl.handle.net/10261/311752
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/311752
PMID: http://hdl.handle.net/10261/311752
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/311752
Ver en: http://hdl.handle.net/10261/311752
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/311752

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312339
Dataset. 2022

TABLE_2_FROM MOUSE TO HUMAN: CELLULAR MORPHOMETRIC SUBTYPE LEARNED FROM MOUSE MAMMARY TUMORS PROVIDES PROGNOSTIC VALUE IN HUMAN BREAST CANCER.XLSX [DATASET]

  • Chang, Hang
  • Yang, Xu
  • Moore, Jade
  • Liu, Xiao-Ping
  • Jen, Kuang-Yu
  • Snijders, Antoine M.
  • Ma, Lin
  • Chou, William
  • Corchado Cobos, Roberto
  • García-Sancha, Natalia
  • Mendiburu-Eliçabe, Marina
  • Pérez-Losada, J.
  • Barcellos-Hoff, Mary Helen
  • Mao, Jian-Hua
Supplementary Table 2. Characteristics of samples in MMTV-Erbb2 mammary tumor cohort., Mouse models of cancer provide a powerful tool for investigating all aspects of cancer biology. In this study, we used our recently developed machine learning approach to identify the cellular morphometric biomarkers (CMB) from digital images of hematoxylin and eosin (H&E) micrographs of orthotopic Trp53-null mammary tumors (n = 154) and to discover the corresponding cellular morphometric subtypes (CMS). Of the two CMS identified, CMS-2 was significantly associated with shorter survival (p = 0.0084). We then evaluated the learned CMB and corresponding CMS model in MMTV-Erbb2 transgenic mouse mammary tumors (n = 53) in which CMS-2 was significantly correlated with the presence of metastasis (p = 0.004). We next evaluated the mouse CMB and CMS model on The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort (n = 1017). Kaplan–Meier analysis showed significantly shorter overall survival (OS) of CMS-2 patients compared to CMS-1 patients (p = 0.024) and added significant prognostic value in multi-variable analysis of clinical and molecular factors, namely, age, pathological stage, and PAM50 molecular subtype. Thus, application of CMS to digital images of routine workflow H&E preparations can provide unbiased biological stratification to inform patient care., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/312339
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312339
HANDLE: http://hdl.handle.net/10261/312339
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312339
PMID: http://hdl.handle.net/10261/312339
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312339
Ver en: http://hdl.handle.net/10261/312339
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312339

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/314228
Dataset. 2022

TABLE_3_FROM MOUSE TO HUMAN: CELLULAR MORPHOMETRIC SUBTYPE LEARNED FROM MOUSE MAMMARY TUMORS PROVIDES PROGNOSTIC VALUE IN HUMAN BREAST CANCER.XLSX [DATASET]

  • Chang, Hang
  • Yang, Xu
  • Moore, Jade
  • Liu, Xiao-Ping
  • Jen, Kuang-Yu
  • Snijders, Antoine M.
  • Ma, Lin
  • Chou, William
  • Corchado Cobos, Roberto
  • García-Sancha, Natalia
  • Mendiburu-Eliçabe, Marina
  • Pérez-Losada, J.
  • Barcellos-Hoff, Mary Helen
  • Mao, Jian-Hua
Supplementary Table 3. Characteristics of patients in the TCGA-BRCA cohort., Mouse models of cancer provide a powerful tool for investigating all aspects of cancer biology. In this study, we used our recently developed machine learning approach to identify the cellular morphometric biomarkers (CMB) from digital images of hematoxylin and eosin (H&E) micrographs of orthotopic Trp53-null mammary tumors (n = 154) and to discover the corresponding cellular morphometric subtypes (CMS). Of the two CMS identified, CMS-2 was significantly associated with shorter survival (p = 0.0084). We then evaluated the learned CMB and corresponding CMS model in MMTV-Erbb2 transgenic mouse mammary tumors (n = 53) in which CMS-2 was significantly correlated with the presence of metastasis (p = 0.004). We next evaluated the mouse CMB and CMS model on The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort (n = 1017). Kaplan–Meier analysis showed significantly shorter overall survival (OS) of CMS-2 patients compared to CMS-1 patients (p = 0.024) and added significant prognostic value in multi-variable analysis of clinical and molecular factors, namely, age, pathological stage, and PAM50 molecular subtype. Thus, application of CMS to digital images of routine workflow H&E preparations can provide unbiased biological stratification to inform patient care., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/314228
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/314228
HANDLE: http://hdl.handle.net/10261/314228
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/314228
PMID: http://hdl.handle.net/10261/314228
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/314228
Ver en: http://hdl.handle.net/10261/314228
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/314228

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/322642
Dataset. 2022

TABLE_4_FROM MOUSE TO HUMAN: CELLULAR MORPHOMETRIC SUBTYPE LEARNED FROM MOUSE MAMMARY TUMORS PROVIDES PROGNOSTIC VALUE IN HUMAN BREAST CANCER.DOCX [DATASET]

  • Chang, Hang
  • Yang, Xu
  • Moore, Jade
  • Liu, Xiao-Ping
  • Jen, Kuang-Yu
  • Snijders, Antoine M.
  • Ma, Lin
  • Chou, William
  • Corchado Cobos, Roberto
  • García-Sancha, Natalia
  • Mendiburu-Eliçabe, Marina
  • Pérez-Losada, J.
  • Barcellos-Hoff, Mary Helen
  • Mao, Jian-Hua
Supplementary Table 4. Clinical characteristics of patients in TCGA-BRCA cohort, Mouse models of cancer provide a powerful tool for investigating all aspects of cancer biology. In this study, we used our recently developed machine learning approach to identify the cellular morphometric biomarkers (CMB) from digital images of hematoxylin and eosin (H&E) micrographs of orthotopic Trp53-null mammary tumors (n = 154) and to discover the corresponding cellular morphometric subtypes (CMS). Of the two CMS identified, CMS-2 was significantly associated with shorter survival (p = 0.0084). We then evaluated the learned CMB and corresponding CMS model in MMTV-Erbb2 transgenic mouse mammary tumors (n = 53) in which CMS-2 was significantly correlated with the presence of metastasis (p = 0.004). We next evaluated the mouse CMB and CMS model on The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort (n = 1017). Kaplan–Meier analysis showed significantly shorter overall survival (OS) of CMS-2 patients compared to CMS-1 patients (p = 0.024) and added significant prognostic value in multi-variable analysis of clinical and molecular factors, namely, age, pathological stage, and PAM50 molecular subtype. Thus, application of CMS to digital images of routine workflow H&E preparations can provide unbiased biological stratification to inform patient care., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/322642
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/322642
HANDLE: http://hdl.handle.net/10261/322642
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/322642
PMID: http://hdl.handle.net/10261/322642
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/322642
Ver en: http://hdl.handle.net/10261/322642
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/322642

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/324192
Dataset. 2022

TABLE_5_FROM MOUSE TO HUMAN: CELLULAR MORPHOMETRIC SUBTYPE LEARNED FROM MOUSE MAMMARY TUMORS PROVIDES PROGNOSTIC VALUE IN HUMAN BREAST CANCER.XLSX [DATASET]

  • Chang, Hang
  • Yang, Xu
  • Moore, Jade
  • Liu, Xiao-Ping
  • Jen, Kuang-Yu
  • Snijders, Antoine M.
  • Ma, Lin
  • Chou, William
  • Corchado Cobos, Roberto
  • García-Sancha, Natalia
  • Mendiburu-Eliçabe, Marina
  • Pérez-Losada, J.
  • Barcellos-Hoff, Mary Helen
  • Mao, Jian-Hua
Supplementary Table 5. Univariate Cox proportional hazards regression result of CMB on tumor growth duration in Trp53-null mammary tumor cohort., Mouse models of cancer provide a powerful tool for investigating all aspects of cancer biology. In this study, we used our recently developed machine learning approach to identify the cellular morphometric biomarkers (CMB) from digital images of hematoxylin and eosin (H&E) micrographs of orthotopic Trp53-null mammary tumors (n = 154) and to discover the corresponding cellular morphometric subtypes (CMS). Of the two CMS identified, CMS-2 was significantly associated with shorter survival (p = 0.0084). We then evaluated the learned CMB and corresponding CMS model in MMTV-Erbb2 transgenic mouse mammary tumors (n = 53) in which CMS-2 was significantly correlated with the presence of metastasis (p = 0.004). We next evaluated the mouse CMB and CMS model on The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort (n = 1017). Kaplan–Meier analysis showed significantly shorter overall survival (OS) of CMS-2 patients compared to CMS-1 patients (p = 0.024) and added significant prognostic value in multi-variable analysis of clinical and molecular factors, namely, age, pathological stage, and PAM50 molecular subtype. Thus, application of CMS to digital images of routine workflow H&E preparations can provide unbiased biological stratification to inform patient care., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/324192
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/324192
HANDLE: http://hdl.handle.net/10261/324192
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/324192
PMID: http://hdl.handle.net/10261/324192
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/324192
Ver en: http://hdl.handle.net/10261/324192
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/324192

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/325471
Dataset. 2022

TABLE_6_FROM MOUSE TO HUMAN: CELLULAR MORPHOMETRIC SUBTYPE LEARNED FROM MOUSE MAMMARY TUMORS PROVIDES PROGNOSTIC VALUE IN HUMAN BREAST CANCER.XLSX [DATASET]

  • Chang, Hang
  • Yang, Xu
  • Moore, Jade
  • Liu, Xiao-Ping
  • Jen, Kuang-Yu
  • Snijders, Antoine M.
  • Ma, Lin
  • Chou, William
  • Corchado Cobos, Roberto
  • García-Sancha, Natalia
  • Mendiburu-Eliçabe, Marina
  • Pérez-Losada, J.
  • Barcellos-Hoff, Mary Helen
  • Mao, Jian-Hua
Supplementary Table 6. Univariate Cox proportional hazards regression result of CMB on overall survival in the TCGA-BRCA cohort., Mouse models of cancer provide a powerful tool for investigating all aspects of cancer biology. In this study, we used our recently developed machine learning approach to identify the cellular morphometric biomarkers (CMB) from digital images of hematoxylin and eosin (H&E) micrographs of orthotopic Trp53-null mammary tumors (n = 154) and to discover the corresponding cellular morphometric subtypes (CMS). Of the two CMS identified, CMS-2 was significantly associated with shorter survival (p = 0.0084). We then evaluated the learned CMB and corresponding CMS model in MMTV-Erbb2 transgenic mouse mammary tumors (n = 53) in which CMS-2 was significantly correlated with the presence of metastasis (p = 0.004). We next evaluated the mouse CMB and CMS model on The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort (n = 1017). Kaplan–Meier analysis showed significantly shorter overall survival (OS) of CMS-2 patients compared to CMS-1 patients (p = 0.024) and added significant prognostic value in multi-variable analysis of clinical and molecular factors, namely, age, pathological stage, and PAM50 molecular subtype. Thus, application of CMS to digital images of routine workflow H&E preparations can provide unbiased biological stratification to inform patient care., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/325471
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/325471
HANDLE: http://hdl.handle.net/10261/325471
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/325471
PMID: http://hdl.handle.net/10261/325471
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/325471
Ver en: http://hdl.handle.net/10261/325471
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/325471

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328258
Dataset. 2022

TABLE_8_FROM MOUSE TO HUMAN: CELLULAR MORPHOMETRIC SUBTYPE LEARNED FROM MOUSE MAMMARY TUMORS PROVIDES PROGNOSTIC VALUE IN HUMAN BREAST CANCER.XLSX [DATASET]

  • Chang, Hang
  • Yang, Xu
  • Moore, Jade
  • Liu, Xiao-Ping
  • Jen, Kuang-Yu
  • Snijders, Antoine M.
  • Ma, Lin
  • Chou, William
  • Corchado Cobos, Roberto
  • García-Sancha, Natalia
  • Mendiburu-Eliçabe, Marina
  • Pérez-Losada, J.
  • Barcellos-Hoff, Mary Helen
  • Mao, Jian-Hua
Supplementary Table 8. Gene ontology (GO) functional enrichment analysis of the differentially expressed genes (DEGs) for biological processes., Mouse models of cancer provide a powerful tool for investigating all aspects of cancer biology. In this study, we used our recently developed machine learning approach to identify the cellular morphometric biomarkers (CMB) from digital images of hematoxylin and eosin (H&E) micrographs of orthotopic Trp53-null mammary tumors (n = 154) and to discover the corresponding cellular morphometric subtypes (CMS). Of the two CMS identified, CMS-2 was significantly associated with shorter survival (p = 0.0084). We then evaluated the learned CMB and corresponding CMS model in MMTV-Erbb2 transgenic mouse mammary tumors (n = 53) in which CMS-2 was significantly correlated with the presence of metastasis (p = 0.004). We next evaluated the mouse CMB and CMS model on The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort (n = 1017). Kaplan–Meier analysis showed significantly shorter overall survival (OS) of CMS-2 patients compared to CMS-1 patients (p = 0.024) and added significant prognostic value in multi-variable analysis of clinical and molecular factors, namely, age, pathological stage, and PAM50 molecular subtype. Thus, application of CMS to digital images of routine workflow H&E preparations can provide unbiased biological stratification to inform patient care., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/328258
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328258
HANDLE: http://hdl.handle.net/10261/328258
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328258
PMID: http://hdl.handle.net/10261/328258
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328258
Ver en: http://hdl.handle.net/10261/328258
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328258

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328398
Dataset. 2022

TABLE_9_FROM MOUSE TO HUMAN: CELLULAR MORPHOMETRIC SUBTYPE LEARNED FROM MOUSE MAMMARY TUMORS PROVIDES PROGNOSTIC VALUE IN HUMAN BREAST CANCER.XLSX [DATASET]

  • Chang, Hang
  • Yang, Xu
  • Moore, Jade
  • Liu, Xiao-Ping
  • Jen, Kuang-Yu
  • Snijders, Antoine M.
  • Ma, Lin
  • Chou, William
  • Corchado Cobos, Roberto
  • García-Sancha, Natalia
  • Mendiburu-Eliçabe, Marina
  • Pérez-Losada, J.
  • Barcellos-Hoff, Mary Helen
  • Mao, Jian-Hua
Supplementary Table 9. Gene ontology (GO) functional enrichment analysis of the differentially expressed genes (DEGs) for cellular component., Mouse models of cancer provide a powerful tool for investigating all aspects of cancer biology. In this study, we used our recently developed machine learning approach to identify the cellular morphometric biomarkers (CMB) from digital images of hematoxylin and eosin (H&E) micrographs of orthotopic Trp53-null mammary tumors (n = 154) and to discover the corresponding cellular morphometric subtypes (CMS). Of the two CMS identified, CMS-2 was significantly associated with shorter survival (p = 0.0084). We then evaluated the learned CMB and corresponding CMS model in MMTV-Erbb2 transgenic mouse mammary tumors (n = 53) in which CMS-2 was significantly correlated with the presence of metastasis (p = 0.004). We next evaluated the mouse CMB and CMS model on The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort (n = 1017). Kaplan–Meier analysis showed significantly shorter overall survival (OS) of CMS-2 patients compared to CMS-1 patients (p = 0.024) and added significant prognostic value in multi-variable analysis of clinical and molecular factors, namely, age, pathological stage, and PAM50 molecular subtype. Thus, application of CMS to digital images of routine workflow H&E preparations can provide unbiased biological stratification to inform patient care., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/328398
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328398
HANDLE: http://hdl.handle.net/10261/328398
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328398
PMID: http://hdl.handle.net/10261/328398
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328398
Ver en: http://hdl.handle.net/10261/328398
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328398

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329402
Dataset. 2022

TABLE_10_FROM MOUSE TO HUMAN: CELLULAR MORPHOMETRIC SUBTYPE LEARNED FROM MOUSE MAMMARY TUMORS PROVIDES PROGNOSTIC VALUE IN HUMAN BREAST CANCER.XLSX [DATASET]

  • Chang, Hang
  • Yang, Xu
  • Moore, Jade
  • Liu, Xiao-Ping
  • Jen, Kuang-Yu
  • Snijders, Antoine M.
  • Ma, Lin
  • Chou, William
  • Corchado Cobos, Roberto
  • García-Sancha, Natalia
  • Mendiburu-Eliçabe, Marina
  • Pérez-Losada, J.
  • Barcellos-Hoff, Mary Helen
  • Mao, Jian-Hua
Supplementary Table 10. Gene ontology (GO) functional enrichment analysis of the differentially expressed genes (DEGs) for molecular function., Mouse models of cancer provide a powerful tool for investigating all aspects of cancer biology. In this study, we used our recently developed machine learning approach to identify the cellular morphometric biomarkers (CMB) from digital images of hematoxylin and eosin (H&E) micrographs of orthotopic Trp53-null mammary tumors (n = 154) and to discover the corresponding cellular morphometric subtypes (CMS). Of the two CMS identified, CMS-2 was significantly associated with shorter survival (p = 0.0084). We then evaluated the learned CMB and corresponding CMS model in MMTV-Erbb2 transgenic mouse mammary tumors (n = 53) in which CMS-2 was significantly correlated with the presence of metastasis (p = 0.004). We next evaluated the mouse CMB and CMS model on The Cancer Genome Atlas breast cancer (TCGA-BRCA) cohort (n = 1017). Kaplan–Meier analysis showed significantly shorter overall survival (OS) of CMS-2 patients compared to CMS-1 patients (p = 0.024) and added significant prognostic value in multi-variable analysis of clinical and molecular factors, namely, age, pathological stage, and PAM50 molecular subtype. Thus, application of CMS to digital images of routine workflow H&E preparations can provide unbiased biological stratification to inform patient care., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329402
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329402
HANDLE: http://hdl.handle.net/10261/329402
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329402
PMID: http://hdl.handle.net/10261/329402
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329402
Ver en: http://hdl.handle.net/10261/329402
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329402

Buscador avanzado