Dataset.

Diversity of pollen dispersed by solitary bees to artificial nests in olive groves

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/273992
Digital.CSIC. Repositorio Institucional del CSIC
  • Cano, Domingo
  • Ossorio Martínez, David
  • León Ruiz, Josefa
  • Pérez, Antonio J.
  • Jiménez, Joaquín
  • Ruiz Valenzuela, Luis
  • Rey, Pedro J.
We sampled the diversity of pollen dispersed by solitary bees by using bee trap nests in 12 paired olive farms located in 6 localities from Andalusia in 2020. On the one hand, each paired olive farm is constituted by an olive farm with low-intensive herb cover management and an olive farm with intensive herb cover management. The low-intensive management consists of the maintenance of herb cover during most of the year being only removed in late spring by mechanic mowing or cattle. Conversely, intensive management consists of removing the herb cover permanently by using pre-emergence and/ or post-emergence herbicides sometimes in combination with ploughing the ground several times a year. On the other hand, each paired farm in each locality is surrounded by the same landscape complexity. We classified each paired farm in three categories of landscape complexity (simple, intermediate, and complex) according to the proportion of semi-natural area estimated within a 2 km radius buffer around the centroid of each pair of farms. We use 144 bee trap nests in total, using two different materials and four cavity diameters (40× ca. 9 mm bamboo, 20× ca. 12 mm reed internodes, 20× ca. 15 mm reed internodes and 4× ca. 20 mm reed internodes), providing a total of 84 nesting cavities per nest. On each farm, six nests were set in March, matching the period of activity in the phenology of these solitary bees and the flowering plants they pollinate. Bee trap nests were set in different microhabitats (i.e. olive orchard matrix and non-productive areas). Trap nest colonization was monitored monthly, from April to September. For every cavity colonized, samples of three different pollen packs were extracted and dyed using fuchsine. Samples were identified under microscope to species or pollen‐type level., Proyecto SUMHAL, LIFEWATCH-2019-09-CSIC-13, POPE 2014-2020., Our aim was to assess the effect of agricultural management and landscape context of the olive orchard on the diversity of pollen dispersed by solitary bees to artificial nests., This work was funded by RECOVECOS project -Evaluating the Recovery debt of ecosystem services provided by the fauna in permanent croplands: effects of land use intensification and landscape complexity in olive groves- (Ref.: PID2019-108332GB-100, MICIN/AEI/10.13039/501100011033), LIFE Program project OLIVARES VIVOS (ref. LIFE14 NAT/ES/001094) and FEDER SUMHAL project Work Package 9. Task 9.3.2. Model impact of land use change -Sustainability for Mediterraean Hotspots in Andalusia- integrating LifeWatch ERIC (LifeWatch ERIC – FEDER, POPE 2014-2020; Ministerio de Ciencia e Innovación, Spain). CSIC is acknowledged for supporting Open Access publication., DB_Pollen_Info.csv [shows the list of pollen species and morphotypes per olive farm] BD_Pollen _Summary.csv [has information of pollen species and morphotypes per olive farm according the data of ' BD_Pollen_LIFE _Info.csv ' file] DB_Pollen_Farm_Info.csv [has information about geographic location, landscape metrics and soil management of each olive farm] Metadata_Pollen.csv [records information about the meaning of columns in BD_Pollen_LIFE _Info.csv ' and ' BD_Pollen_LIFE_Summary.csv' and Metada_Pollen_LIFE.csv' files.], Peer reviewed
 

DOI: http://hdl.handle.net/10261/273992, https://doi.org/10.20350/digitalCSIC/14690
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/273992

HANDLE: http://hdl.handle.net/10261/273992, https://doi.org/10.20350/digitalCSIC/14690
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/273992
 
Ver en: http://hdl.handle.net/10261/273992, https://doi.org/10.20350/digitalCSIC/14690
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/273992

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/273992
Dataset. 2022

DIVERSITY OF POLLEN DISPERSED BY SOLITARY BEES TO ARTIFICIAL NESTS IN OLIVE GROVES

Digital.CSIC. Repositorio Institucional del CSIC
  • Cano, Domingo
  • Ossorio Martínez, David
  • León Ruiz, Josefa
  • Pérez, Antonio J.
  • Jiménez, Joaquín
  • Ruiz Valenzuela, Luis
  • Rey, Pedro J.
We sampled the diversity of pollen dispersed by solitary bees by using bee trap nests in 12 paired olive farms located in 6 localities from Andalusia in 2020. On the one hand, each paired olive farm is constituted by an olive farm with low-intensive herb cover management and an olive farm with intensive herb cover management. The low-intensive management consists of the maintenance of herb cover during most of the year being only removed in late spring by mechanic mowing or cattle. Conversely, intensive management consists of removing the herb cover permanently by using pre-emergence and/ or post-emergence herbicides sometimes in combination with ploughing the ground several times a year. On the other hand, each paired farm in each locality is surrounded by the same landscape complexity. We classified each paired farm in three categories of landscape complexity (simple, intermediate, and complex) according to the proportion of semi-natural area estimated within a 2 km radius buffer around the centroid of each pair of farms. We use 144 bee trap nests in total, using two different materials and four cavity diameters (40× ca. 9 mm bamboo, 20× ca. 12 mm reed internodes, 20× ca. 15 mm reed internodes and 4× ca. 20 mm reed internodes), providing a total of 84 nesting cavities per nest. On each farm, six nests were set in March, matching the period of activity in the phenology of these solitary bees and the flowering plants they pollinate. Bee trap nests were set in different microhabitats (i.e. olive orchard matrix and non-productive areas). Trap nest colonization was monitored monthly, from April to September. For every cavity colonized, samples of three different pollen packs were extracted and dyed using fuchsine. Samples were identified under microscope to species or pollen‐type level., Proyecto SUMHAL, LIFEWATCH-2019-09-CSIC-13, POPE 2014-2020., Our aim was to assess the effect of agricultural management and landscape context of the olive orchard on the diversity of pollen dispersed by solitary bees to artificial nests., This work was funded by RECOVECOS project -Evaluating the Recovery debt of ecosystem services provided by the fauna in permanent croplands: effects of land use intensification and landscape complexity in olive groves- (Ref.: PID2019-108332GB-100, MICIN/AEI/10.13039/501100011033), LIFE Program project OLIVARES VIVOS (ref. LIFE14 NAT/ES/001094) and FEDER SUMHAL project Work Package 9. Task 9.3.2. Model impact of land use change -Sustainability for Mediterraean Hotspots in Andalusia- integrating LifeWatch ERIC (LifeWatch ERIC – FEDER, POPE 2014-2020; Ministerio de Ciencia e Innovación, Spain). CSIC is acknowledged for supporting Open Access publication., DB_Pollen_Info.csv [shows the list of pollen species and morphotypes per olive farm] BD_Pollen _Summary.csv [has information of pollen species and morphotypes per olive farm according the data of ' BD_Pollen_LIFE _Info.csv ' file] DB_Pollen_Farm_Info.csv [has information about geographic location, landscape metrics and soil management of each olive farm] Metadata_Pollen.csv [records information about the meaning of columns in BD_Pollen_LIFE _Info.csv ' and ' BD_Pollen_LIFE_Summary.csv' and Metada_Pollen_LIFE.csv' files.], Peer reviewed





1106