Dataset.

Oxygen concentration in the water column over a Posidonia oceanica meadow in Cabrera Archipelago Marine-Terrestrial National Park between October 2019 – October 2021

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332636
Digital.CSIC. Repositorio Institucional del CSIC
  • Hendriks, Iris E.
  • Aramburu, Peru Agueda
  • Flecha, Susana
  • Morell, Carlos
[Description of methods used for collection/generation of data] For the study, environmental data were measured by sensors located in both the water column and the benthic compartment (at 4 m and 8 m, respectively). Temperature, salinity and dissolved oxygen (DO) from the water column were measured from October 2019 to October 2021 by a sensor attached to the mooring line. Data were recorded with a CT SBE37 (Conductivity, Temperature) sensor (SBE37SMP-ODO-RS232, Sea-Bird Scientific©) coupled with an SBE 63 (Sea-Bird Scientific©) dissolved oxygen (DO) sensor with accuracies of ± 0.002 °C for temperature, ± 0.002 mS cm-1 for conductivity and ± 2 % for DO. Measurements were taken with a resolution of 0.0001 ºC for temperature, 0.0001 mS cm−-1 for conductivity and 0.2 µmol kg-1 for DO. Multiparametric Hydrolab HL4 probes (OTT HydroMet) were deployed during 8 different periods covering all seasons following the procedure by Hendriks et al. (2021). Accuracy for the multiparametric probe sensors is ± 0.10 ºC for temperature and ± 0.5 % of reading + 0.001 mS cm−1 for conductivity, with resolutions of 0.01 ºC and 0.001 mS cm-−1, respectively. The DO sensor presents an accuracy of ± 0.1 mg L−1 for values lower than 8 mg L−1, and ± 0.2 mg L−1 for values higher than 8 mg L−1, and a resolution of 0.01 mg L−1. Two benthic chambers were installed during May and July 2021 using a design previously described in Barrón et al. (2006). MiniDOT sensors (PME, Inc. ©) were used for temperature and DO measurements every 15 minutes, with accuracies of ± 0.1 ºC and ± 5 %, respectively. DO sensor data were validated against water samples analysed with the Winkler method.. Three chamber replicates were installed during each deployment. Wind speed (m s−1) values at Cabrera NP Station were obtained from data provided by the Organismo Autónomo de Parques Nacionales (OAPN, Spain). For the benthic chambers, night respiration was estimated from changes in DO between one hour after sunset and one hour before sunrise. The same procedure was followed for the calculation of the net community production (NCP) during daylight hours, and the two values were summed for GPP. NCP was used along with the total meadow area coverage and residence time of water in Sta. María Bay to determine the total O2 exported by the meadow to the water column. For the metabolic rate calculation, only oxygen data from the first 24 hours were used., [Methods for processing the data] Seasonal variations in the metabolic rates were analysed with a one-way ANOVA test using the Statistics and Machine Learning ToolboxTM in Matlab® (https://mathworks.com). For this purpose, daily metabolic rates from water column sensors and multiparametric sensors were grouped by season . The same statistical analysis was performed to analyse disparities between sensors. Since benthic chamber data were only available for one day in May and one day in July, differences between deployments were tested using a Student t-test., readme provides background information for csv datafiles. Csv datafiles are processed data of oxygen concentrations used as input for the model, with a frequency of 10 minutes for hydrolab (HL) measurements and hourly for the CT measurements, and a frequency of 15 minutes for MiniDot measurements., Spanish Ministry of Science (SumaEco, RTI2018–095441-B-C21), the Government of the Balearic Islands through la Consellería d'Innovació, Recerca i Turisme (Projecte de recerca científica i tecnològica SEPPO, PRD2018/18), the Posi-COIN Project from the 2018 BBVA Foundation “Ayudas a equipos de investigación científica” call. STARTER research project funded by the 2021 call of the Càtedra de la Mar, Iberostar Foundation. This work is a contribution to CSIC's Thematic Interdisciplinary Platform PTI OCEANS+. The present research was carried out within the framework of the activities of the Spanish Government through the "Maria de Maeztu Centre of Excellence" accreditation to IMEDEA (CSIC-UIB) (CEX2021-001198)., With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001198)., Peer reviewed
 

DOI: http://hdl.handle.net/10261/332636
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332636

HANDLE: http://hdl.handle.net/10261/332636
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332636
 
Ver en: http://hdl.handle.net/10261/332636
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332636

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332636
Dataset. 2023

OXYGEN CONCENTRATION IN THE WATER COLUMN OVER A POSIDONIA OCEANICA MEADOW IN CABRERA ARCHIPELAGO MARINE-TERRESTRIAL NATIONAL PARK BETWEEN OCTOBER 2019 – OCTOBER 2021

Digital.CSIC. Repositorio Institucional del CSIC
  • Hendriks, Iris E.
  • Aramburu, Peru Agueda
  • Flecha, Susana
  • Morell, Carlos
[Description of methods used for collection/generation of data] For the study, environmental data were measured by sensors located in both the water column and the benthic compartment (at 4 m and 8 m, respectively). Temperature, salinity and dissolved oxygen (DO) from the water column were measured from October 2019 to October 2021 by a sensor attached to the mooring line. Data were recorded with a CT SBE37 (Conductivity, Temperature) sensor (SBE37SMP-ODO-RS232, Sea-Bird Scientific©) coupled with an SBE 63 (Sea-Bird Scientific©) dissolved oxygen (DO) sensor with accuracies of ± 0.002 °C for temperature, ± 0.002 mS cm-1 for conductivity and ± 2 % for DO. Measurements were taken with a resolution of 0.0001 ºC for temperature, 0.0001 mS cm−-1 for conductivity and 0.2 µmol kg-1 for DO. Multiparametric Hydrolab HL4 probes (OTT HydroMet) were deployed during 8 different periods covering all seasons following the procedure by Hendriks et al. (2021). Accuracy for the multiparametric probe sensors is ± 0.10 ºC for temperature and ± 0.5 % of reading + 0.001 mS cm−1 for conductivity, with resolutions of 0.01 ºC and 0.001 mS cm-−1, respectively. The DO sensor presents an accuracy of ± 0.1 mg L−1 for values lower than 8 mg L−1, and ± 0.2 mg L−1 for values higher than 8 mg L−1, and a resolution of 0.01 mg L−1. Two benthic chambers were installed during May and July 2021 using a design previously described in Barrón et al. (2006). MiniDOT sensors (PME, Inc. ©) were used for temperature and DO measurements every 15 minutes, with accuracies of ± 0.1 ºC and ± 5 %, respectively. DO sensor data were validated against water samples analysed with the Winkler method.. Three chamber replicates were installed during each deployment. Wind speed (m s−1) values at Cabrera NP Station were obtained from data provided by the Organismo Autónomo de Parques Nacionales (OAPN, Spain). For the benthic chambers, night respiration was estimated from changes in DO between one hour after sunset and one hour before sunrise. The same procedure was followed for the calculation of the net community production (NCP) during daylight hours, and the two values were summed for GPP. NCP was used along with the total meadow area coverage and residence time of water in Sta. María Bay to determine the total O2 exported by the meadow to the water column. For the metabolic rate calculation, only oxygen data from the first 24 hours were used., [Methods for processing the data] Seasonal variations in the metabolic rates were analysed with a one-way ANOVA test using the Statistics and Machine Learning ToolboxTM in Matlab® (https://mathworks.com). For this purpose, daily metabolic rates from water column sensors and multiparametric sensors were grouped by season . The same statistical analysis was performed to analyse disparities between sensors. Since benthic chamber data were only available for one day in May and one day in July, differences between deployments were tested using a Student t-test., readme provides background information for csv datafiles. Csv datafiles are processed data of oxygen concentrations used as input for the model, with a frequency of 10 minutes for hydrolab (HL) measurements and hourly for the CT measurements, and a frequency of 15 minutes for MiniDot measurements., Spanish Ministry of Science (SumaEco, RTI2018–095441-B-C21), the Government of the Balearic Islands through la Consellería d'Innovació, Recerca i Turisme (Projecte de recerca científica i tecnològica SEPPO, PRD2018/18), the Posi-COIN Project from the 2018 BBVA Foundation “Ayudas a equipos de investigación científica” call. STARTER research project funded by the 2021 call of the Càtedra de la Mar, Iberostar Foundation. This work is a contribution to CSIC's Thematic Interdisciplinary Platform PTI OCEANS+. The present research was carried out within the framework of the activities of the Spanish Government through the "Maria de Maeztu Centre of Excellence" accreditation to IMEDEA (CSIC-UIB) (CEX2021-001198)., With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001198)., Peer reviewed




1106