Dataset.

Additional file 1 of A novel and diverse group of Candidatus Patescibacteria from bathypelagic Lake Baikal revealed through long-read metagenomics [Dataset]

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/361029
Digital.CSIC. Repositorio Institucional del CSIC
  • Haro-Moreno, José M.
  • Cabello-Yeves, Pedro J.
  • Garcillán-Barcia, M. Pilar
  • Zakharenko, Alexandra
  • Zemskaya, Tamara I.
  • Rodriguez-Valera, Francisco
Additional file 1: Table S1. Summary statistics of the Baikal 1600 m long-read sequencing and metagenomic assembly. Fig. S1. A Principal component analysis (PCA) between deep Lake Baikal metagenomes based on a Bray-Curtis similarity k-mer profile frequencies of sequencing reads. Red and blue dots represent summer and winter Illumina metagenomes, respectively, while the green dot is the sample retrieved in this study and sequenced with PacBio Sequel II. B Phylum-level composition based on 16S rRNA gene fragments (Illumina and PacBio CCS5 reads) of the different metagenomes. The single metagenome highlighted in green corresponds to the PacBio sequencing, whilst the rest of datasets belong to previous Illumina sequencing. The phylum Proteobacteria was divided into its class-level classification. Only those groups with abundance values larger than 1% in any of the metagenomes are shown. C Classification of the 1600 m PacBio CCS5 16S rRNA reads at a higher taxonomic resolution. Only sequences larger than 1000 nucleotides were considered. Sequences ascribed to the Ca. Patescibacteria phylum are highlighted in green. Table S2. Genomic parameters of LAGs recovered in this study. Table S3. Genomic parameters of LAGs recovered in this study with ANI > 99.5% to MAGs retrieved from Lake Baikal 1250 and 1350 m deep. Fig. S2. Alignment of two LAGs that are complete in a single contig and the respective MAG from the Illumina assembly. Table S4. Genomic parameters of the resulting bins from the Baikal 1600 m CCS sequences. The four Baikalibacteria bins are highlighted in yellow. Fig. S3. A Maximum likelihood phylogenetic tree of the Baikalibacteria 16S rRNA genes. Sequences outside the deep branch coming from Figure 1 were used as an outgroup for the tree. The reads from the four read bins are colored in the figure. B Diversity of 16S rRNA sequences of Baikalibacteria bins. Linear representation of selected CCS5 reads (indicated with a red circle in the left panel) containing a 16S rRNA gene. A pairwise blastn comparison among reads was performed to detect orthologous genes. Fig. S4. A Average nucleotide identity based on metagenomic reads (ANIr) of LAGs and the four Baikalibacteria Bins. B ANIr of ten randomly selected sequences of each Baikalibacteria bin. Fig. S5. Metagenomic recruitment of the largest fragment of Baikalibacteria RBin09 on Lake Thun 180 m deep. Fig. S6. Maximum likelihood phylogenetic tree of the a phytoene elongase (LyeJ), b carotenoid 3,4-desaturase (CrtD), and c bisanhydrobacterioruberin hydratase (CruF) proteins., Peer reviewed
 
DOI: http://hdl.handle.net/10261/361029
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/361029

HANDLE: http://hdl.handle.net/10261/361029
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/361029
 
Ver en: http://hdl.handle.net/10261/361029
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/361029

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/361029
Dataset. 2023

ADDITIONAL FILE 1 OF A NOVEL AND DIVERSE GROUP OF CANDIDATUS PATESCIBACTERIA FROM BATHYPELAGIC LAKE BAIKAL REVEALED THROUGH LONG-READ METAGENOMICS [DATASET]

Digital.CSIC. Repositorio Institucional del CSIC
  • Haro-Moreno, José M.
  • Cabello-Yeves, Pedro J.
  • Garcillán-Barcia, M. Pilar
  • Zakharenko, Alexandra
  • Zemskaya, Tamara I.
  • Rodriguez-Valera, Francisco
Additional file 1: Table S1. Summary statistics of the Baikal 1600 m long-read sequencing and metagenomic assembly. Fig. S1. A Principal component analysis (PCA) between deep Lake Baikal metagenomes based on a Bray-Curtis similarity k-mer profile frequencies of sequencing reads. Red and blue dots represent summer and winter Illumina metagenomes, respectively, while the green dot is the sample retrieved in this study and sequenced with PacBio Sequel II. B Phylum-level composition based on 16S rRNA gene fragments (Illumina and PacBio CCS5 reads) of the different metagenomes. The single metagenome highlighted in green corresponds to the PacBio sequencing, whilst the rest of datasets belong to previous Illumina sequencing. The phylum Proteobacteria was divided into its class-level classification. Only those groups with abundance values larger than 1% in any of the metagenomes are shown. C Classification of the 1600 m PacBio CCS5 16S rRNA reads at a higher taxonomic resolution. Only sequences larger than 1000 nucleotides were considered. Sequences ascribed to the Ca. Patescibacteria phylum are highlighted in green. Table S2. Genomic parameters of LAGs recovered in this study. Table S3. Genomic parameters of LAGs recovered in this study with ANI > 99.5% to MAGs retrieved from Lake Baikal 1250 and 1350 m deep. Fig. S2. Alignment of two LAGs that are complete in a single contig and the respective MAG from the Illumina assembly. Table S4. Genomic parameters of the resulting bins from the Baikal 1600 m CCS sequences. The four Baikalibacteria bins are highlighted in yellow. Fig. S3. A Maximum likelihood phylogenetic tree of the Baikalibacteria 16S rRNA genes. Sequences outside the deep branch coming from Figure 1 were used as an outgroup for the tree. The reads from the four read bins are colored in the figure. B Diversity of 16S rRNA sequences of Baikalibacteria bins. Linear representation of selected CCS5 reads (indicated with a red circle in the left panel) containing a 16S rRNA gene. A pairwise blastn comparison among reads was performed to detect orthologous genes. Fig. S4. A Average nucleotide identity based on metagenomic reads (ANIr) of LAGs and the four Baikalibacteria Bins. B ANIr of ten randomly selected sequences of each Baikalibacteria bin. Fig. S5. Metagenomic recruitment of the largest fragment of Baikalibacteria RBin09 on Lake Thun 180 m deep. Fig. S6. Maximum likelihood phylogenetic tree of the a phytoene elongase (LyeJ), b carotenoid 3,4-desaturase (CrtD), and c bisanhydrobacterioruberin hydratase (CruF) proteins., Peer reviewed




1106