VIDA MICROBIANA MAS ALLA DE CONDICIONES OPTIMAS
CGL2014-58762-P
•
Nombre agencia financiadora Ministerio de Economía y Competitividad
Acrónimo agencia financiadora MINECO
Programa Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia
Subprograma Subprograma Estatal de Generación del Conocimiento
Convocatoria Proyectos de I+D dentro del Subprograma Estatal de Generación del Conocimiento (2014)
Año convocatoria 2014
Unidad de gestión Dirección General de Investigación Científica y Técnica
Centro beneficiario AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS (CSIC)
Centro realización INSTITUTO DE RECURSOS NATURALES Y AGROBIOLOGÍA SEVILLA (IRNAS) - DEPARTAMENTO DE GEOECOLOGÍA, BIOGEOQUÍMICA Y MICROBIOLOGÍA AMBIENTAL
Identificador persistente http://dx.doi.org/10.13039/501100003329
Publicaciones
Found(s) 21 result(s)
Found(s) 1 page(s)
Found(s) 1 page(s)
Analysis of three genomes within the thermophilic bacterial species Caldanaerobacter subterraneus with a focus on carbon monoxide dehydrogenase evolution and hydrolase diversity
Digital.CSIC. Repositorio Institucional del CSIC
- Sant'Anna, F. H.
- Lebedinsky, A. V.
- Sokolova, T.
- Robb, F. T.
- González Grau, Juan Miguel
14 páginas.-- 5 figuras.-- 1 tabla.-- 80 referencias.-- Supporting data are included as Additional files. Phylogenetic data have been deposited at Tree BASE under the accession URL http://purl.org/phylo/treebase/phylows/study/TB2:S18113.-- The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1471-2164/16/757, [Background] The Caldanaerobacter subterraneus species includes thermophilic fermentative bacteria able to grow on carbohydrates substrates with acetate and L-alanine as the main products. In this study, comprehensive analysis of three genomes of C. subterraneus subspecies was carried in order to identify genes encoding key metabolic enzymes and to document the genomic basis for the evolution of these organisms., [Methods] Average nucleotide identity and in silico DNA relatedness were estimated for the studied C. subterraneus genomes. Genome synteny was evaluated using R2CAT software. Protein conservation was analyzed using mGenome Subtractor. Horizontal gene transfer was predicted through the GOHTAM pipeline (using tetranucleotide composition) and phylogenetic analyses (by maximum likelihood). Hydrolases were identified through the MEROPS and CAZy platforms., [Results] The three genomes of C. subterraneus showed high similarity, although there are substantial differences in their gene composition and organization. Each subspecies possesses a gene cluster encoding a carbon monoxide dehydrogenase (CODH) and an energy converting hydrogenase (ECH). The CODH gene is associated with an operon that resembles the Escherichia coli hydrogenase hyc/hyf operons, a novel genetic context distinct from that found in archetypical hydrogenogenic carboxydotrophs. Apart from the CODH-associated hydrogenase, these bacteria also contain other hydrogenases, encoded by ech and hyd genes. An Mbx ferredoxin:NADP oxidoreductase homolog similar to that originally described in the archaeon Pyrococcus furiosus was uniquely encoded in the C. subterraneus subsp. yonseiensis genome. Compositional analysis demonstrated that some genes of the CODH-ECH and mbx operons present distinct sequence patterns in relation to the majority of the other genes of each genome. Phylogenetic reconstructions of the genes from these operons and those from the ech operon are incongruent to the species tree. Notably, the cooS gene of C. subterraneus subsp. pacificus and its homologs in C. subterraneus subsp. tengcongensis and C. subterraneus subsp. yonseiensis form distinct clades. The strains have diverse hydrolytic enzymes and they appear to be proteolytic and glycolytic. Divergent glycosidases from 14 families, among them amylases, chitinases, alpha-glucosidases, beta-glucosidases, and cellulases, were identified. Each of the three genomes also contains around 100 proteases from 50 subfamilies, as well about ten different esterases. Conclusions: Genomic information suggests that multiple horizontal gene transfers conferred the adaptation of C. subterraneus subspecies to extreme niches throughout the carbon monoxide utilization and hydrogen production. The variety of hydrolases found in their genomes indicate the versatility of the species in obtaining energy and carbon from diverse substrates, therefore these organisms constitute a remarkable resource of enzymes with biotechnological potential. © 2015 Sant'Anna et al., FHS received scholarship from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil), process number 2403-13-7. The work of AVL and TGS was supported by the Russian Scientific Fund grant no. 14-24-00165. JMG acknowledges funding through projects CSD2009-00006, CGL2014-58762-P and GEN2006-26423-E from the Spanish Ministry of Economy and Competitiveness and RNM2529 and BIO288 from the Andalusian Government; Feder funds cofinanced these projects. C. subterraneus pacificus genome sequencing was carried out by the J. Craig Venter Institute through the Microbial Genome Sequencing Project sponsored by The Gordon and Betty Moore Foundation’s Marine Microbiology Initiative. Funding from the mobility programme 003-ABEL-CM-2013 (NILS Science and Sustainability programme, EEA grants) is also acknowledged. FTR acknowledges the support of a US National Science Foundation Grant. FTR acknowledges grant support from the Center for Dark Energy Biosphere Investigations (C-DEBI), an NSF Research Center at the University of Southern California. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI)., Peer reviewed
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
High temperature microbial activity in upper soil layers
Digital.CSIC. Repositorio Institucional del CSIC
- Santana, Margarida
- González Grau, Juan Miguel
Biomineralization at high temperatures in upper soil layers has been largely ignored, although desertification and global warming have led to increasing areas of soils exposed to high temperatures. Recent publications evidenced thermophilic bacteria ubiquity in soils as viable cells, and their role in nutrient cycling and seedling development. High temperature events, frequently observed at medium and low latitudes, locate temporal niches for thermophiles to grow in soils. There, at temperatures inhibitory for common mesophiles, thermophilic bacteria could perform biogeochemical reactions important to the soil food web. Nutrient cycling analyses in soils at medium and low latitudes would benefit from considering the potential role of thermophiles. © FEMS 2015., This work was funded by FEDER Funds through the Operational Programme for Competitiveness Factors – COMPETE, and National Funds through the Foundation for Science and Technology (FCT) under the Strategic Project PEst-C/AGR/UI0115/2011 to MMS, and by the Regional Government of Andalusia, projects BIO288 and RNM2529, and the Spanish Ministry of Economy and Productiveness, projects CGL2009-12328/BOS, CGL2014-58762-P and CONSOLIDER CSD2009-00006 to JMG, also cofunded by FEDER funds., Peer reviewed
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
Hydrolytic enzyme activity enhanced by Barium supplementation
Digital.CSIC. Repositorio Institucional del CSIC
- Muñoz, Camilo
- Fermoso, Fernando G.
- Rivas, Mariela
- González Grau, Juan Miguel
10 páginas.-- 2 figuras.-- 1 tabla.-- 26 referencias, Hydrolysis of polymers is a first and often limiting step during the degradation of plant residues. Plant biomass is generally a major component of waste residues and a major renewable resource to obtain a variety of secondary products including biofuels. Improving the performance of enzymatic hydrolysis of plant material with minimum costs and limiting the use of additional microbial biomass or hydrolytic enzymes directly influences competitiveness of these green biotechnological processes. In this study, we cloned and expressed a cellulase and two esterases recovered from environmental thermophilic soil bacterial communities and characterize their optimum activity conditions including the effect of several metal ions. Results showed that supplementing these hydrolytic reactions with Barium increases the activity of these extracellular hydrolytic enzymes. This observation represents a simple but major improvement to enhance the efficiency and competitiveness of this process within an increasingly important biotechnological sector., Support from the Spanish Ministry of Economy and Competitiveness (CONSOLIDER CSD2009-00006, CGL2014-58762-P, CTM2014-55095), the Andalusian Government (BIO288 and RNM2529), both cofinanced by FEDER funds, intramural project OEP2011 (201570I020), the mobility programme 003-ABEL-CM-2013 (NILS Science and Sustainability programme, EEA grants), the mobility and coordination European project ALGAENET (Marie Curie Actions IRSES- 295165, FP7-PEOPLE-2011) and COST Action ES1302., Peer reviewed
Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules
Digital.CSIC. Repositorio Institucional del CSIC
- Cuecas, Alba
- Cruces Tova, Jorge
- Galisteo-López, Juan F.
- Peng, X.
- González Grau, Juan Miguel
8 páginas.-- 6 figuras.-- 32 referencias, Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50–80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature., The authors acknowledge funding from projects No. CSD2009-0006 and No. CGL2014-58762-P from the Spanish Ministry of Economy and Competitiveness and grants No. BIO-288 and No. RNM2529 from the Andalusian Government. Federal funds cofinanced these projects. Funding from the mobility program No. 003-ABEL-CM-2013 (NILS Science and Sustainability program, EEA grants) is also acknowledged., Peer Reviewed
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
Evidence of horizontal gene transfer by transposase gene analyses in Fervidobacterium species
Digital.CSIC. Repositorio Institucional del CSIC
- Cuecas, Alba
- Kanoksilapatham, W.
- González Grau, Juan Miguel
21 páginas.-- 12 figuras.-- 5 tablas.--31 referencias, Horizontal Gene Transfer (HGT) plays an important role in the physiology and evolution of microorganisms above all thermophilic prokaryotes. Some members of the Phylum Thermotogae (i.e., Thermotoga spp.) have been reported to present genomes constituted by a mosaic of genes from a variety of origins. This study presents a novel approach to search on the potential plasticity of Fervidobacterium genomes using putative transposase-encoding genes as the target of analysis. Transposases are key proteins involved in genomic DNA rearrangements. A comprehensive comparative analysis, including phylogeny, non-metric multidimensional scaling analysis of tetranucleotide frequencies, repetitive flanking sequences and divergence estimates, was performed on the transposase genes detected in four Fervidobacterium genomes: F. nodosum, F. pennivorans, F. islandicum and a new isolate (Fervidobacterium sp. FC2004). Transposase sequences were classified in different groups by their degree of similarity. The different methods used in this study pointed that over half of the transposase genes represented putative HGT events with closest relative sequences within the phylum Firmicutes, being Caldicellulosiruptor the genus showing highest gene sequence proximity. These results confirmed a direct evolutionary relationship through HGT between specific Fervidobacterium species and thermophilic Firmicutes leading to potential gene sequence and functionality sharing to thrive under similar environmental conditions. Transposase-encoding genes represent suitable targets to approach the plasticity and potential mosaicism of bacterial genomes., This study was supported by funding through projects from the Spanish Ministry of Economy and Competitiveness (CSD2009-00006 and CGL2014-58762-P) and the Regional Government of Andalusia (RNM2529 and BIO288). The participation of FEDER funds is acknowledged, Peer Reviewed
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
Vida microbiana a temperaturas elevadas. Diversidad, aislamiento, termoestabilidad molecular y genómica
Digital.CSIC. Repositorio Institucional del CSIC
- Cuecas, Alba
285 páginas.-- 89 figuras.-- 26 tablas.-- 273 referencias.-- Memoria que presenta para optar al título de Doctor en Biología Molecular y Biomedicina, Tutor: Antonio Ventosa Ucero, Catedrático de la Universidad de Sevilla, A pesar de los numerosos estudios publicados sobre la vida a altas temperaturas, aún existen aspectos fundamentales por comprender. La presente tesis estudia la vida microbiana a altas temperaturas desde diferentes enfoques. Por un lado, analizamos la influencia de la temperatura sobre la distribución de los microorganismos tomando como modelo un gradiente de temperatura natural de 50ºC en una fuente termal. La temperatura y las interacciones entre sus componentes resultaron ser determinantes para estructurar las comunidades microbianas. El aislamiento de una nueva especie de bacteria termófila extrema y anaeróbica, Fervidobacterium thailandense FC2004T, y la secuenciación de su genoma hace posible un estudio en detalle y su clasificación taxonómica. La comparación de cuatro genomas dentro del género Fervidobacterium ha permitido determinar que los genes que codifican transposasas son un modelo adecuado para analizar fenómenos de intercambio de material genético (transferencia horizontal de genes, HGT) y evaluar la plasticidad de estos genomas y su historia evolutiva. Los microorganismos termófilos viven a temperaturas a las que numerosas biomoléculas, como el NADH, son inestables. La viscosidad influye decisivamente en la estabilización de esas pequeñas biomoléculas. La viscosidad intracelular en microorganismos termófilos (entre 50 y 80ºC) era relativamente elevada, lo que confirma el efecto estabilizador de la viscosidad. Esta tesis contribuye a comprender la importancia de la temperatura sobre los microorganismos y sus comunidades microbianas, su capacidad para desarrollarse a temperaturas elevadas, así como el dinamismo de sus genomas y fenotipos, Vida microbiana más allá de las condiciones óptimas. CGL2014-58762-P. MINECO, Plan Nacional I+D+i, Proyectos de Excelencia. Enero 2015- Diciembre 2017 Genómica comparada microbiana. CGL2015-71523-REDC. MINECO, Plan Nacional I+D+i, Redes Consolider. Diciembre 2015 – Noviembre 2017. Genómica comparada microbiana. Consolider CSD2009-00006. MINECO. Plan Nacional I+D+i, Proyecto Consolider. Diciembre 2009 – Junio 2015. Diversidad microbiana y Microbiología de ambientes extremos. BIO 288. Junta de Andalucía., Peer reviewed
Nitric Oxide Accumulation: The Evolutionary Trigger for Phytopathogenesis
Digital.CSIC. Repositorio Institucional del CSIC
- Santana, Margarida
- González Grau, Juan Miguel
- Cruz, Cristina
13 páginas.-- 4 figuras.-- 85 referencias, Many publications highlight the importance of nitric oxide (NO) in plant–bacteria interactions, either in the promotion of health and plant growth or in pathogenesis. However, the role of NO in the signaling between bacteria and plants and in the fate of their interaction, as well as the reconstruction of their interactive evolution, remains largely unknown. Despite the complexity of the evolution of life on Earth, we explore the hypothesis that denitrification and aerobic respiration were responsible for local NO accumulation, which triggered primordial antagonistic biotic interactions, namely the first phytopathogenic interactions. N-oxides, including NO, could globally accumulate via lightning synthesis in the early anoxic ocean and constitute pools for the evolution of denitrification, considered an early step of the biological nitrogen cycle. Interestingly, a common evolution may be proposed for components of denitrification and aerobic respiration pathways, namely for NO and oxygen reductases, a theory compatible with the presence of low amounts of oxygen before the great oxygenation event (GOE), which was generated by Cyanobacteria. During GOE, the increase in oxygen caused the decrease of Earth’s temperature and the consequent increase of oxygen dissolution and availability, making aerobic respiration an increasingly dominant trait of the expanding mesophilic lifestyle. Horizontal gene transfer was certainly important in the joint expansion of mesophily and aerobic respiration. First denitrification steps lead to NO formation through nitrite reductase activity, and NO may further accumulate when oxygen binds NO reductase, resulting in denitrification blockage. The consequent transient NO surplus in an oxic niche could have been a key factor for a successful outcome of an early denitrifying prokaryote able to scavenge oxygen by NO/oxygen reductase or by an independent heterotrophic aerobic respiration pathway. In fact, NO surplus could result in toxicity causing “the first disease” in oxygen-producing Cyanobacteria. We inspected in bacteria the presence of sequences similar to the NO-producing nitrite reductase nirS gene of Thermus thermophilus, an extreme thermophilic aerobe of the Thermus/Deinococcus group, which constitutes an ancient lineage related to Cyanobacteria. In silico analysis revealed the relationship between the presence of nirS genes and phytopathogenicity in Gram-negative bacteria., This work was funded by national funds through FCT – Fundação para a Ciência e a Tecnologia – in the frame of projects UID/BIA/00329/2013 and PTDC/AGR-PRO/1852/2014. MS is recipient of a grant (SFRH/BPD/109079/2015) from Fundação para a Ciência e a Tecnologia. JG acknowledges support from the Spanish Ministry of Economy, Industry and Competitiveness, CGL2014-58762-P, and Andalusian Regional Government, RNM2529, both cofinanced with FEDER funds., Peer reviewed
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
Actividad respiratoria de microorganismos termófilos en suelos
Digital.CSIC. Repositorio Institucional del CSIC
- Delgado Romero, José A.
- Gómez Fernández, Enrique J.
- González Grau, Juan Miguel
1 páginas.-- 4 referencias.-- Comunicación presentada en la XIII Reunión de la Red Nacional de Microorganismos Extremófilos 21-22 Octubre (2016) Alicante, La descomposición de la materia orgánica del suelo por microorganismos es un aspecto esencial en el estudio del balance de carbono suelo-atmósfera. La biomineralización a temperaturas altas en la superficie del suelo no ha recibido la importancia que se merece. Recientes investigaciones han demostrado la presencia de termófilos en suelos 1 y que la actividad enzimática extracelular (paso inicial en la descomposición de la materia orgánica) en suelos es máxima a temperaturas de 60 y 70ºC 2 . Hemos de considerar que eventos de altas temperaturas son cada vez más frecuente en latitudes medias y bajas 3 . La actividad microbiana se evaluará midiendo la respiración aeróbica, medida directa de la mineralización de carbono orgánico. Se utilizará un sistema de microrespiración (Unisense) con electrodos de O 2 a temperaturas controladas de
30 y 60ºC. Las tasas de respiración a 60ºC en todos los suelos estudiados de época estival han sido bastante notorias, incluso llegando a ser superiores a la tasa de respiración a 30ºC en uno de los casos estudiados. Ello indica que los microorganismos termófilos pueden desempeñar un papel importante en la mineralización de la materia orgánica en suelos. Estos estudios se complementarán con comparaciones de respiración a distintas temperaturas y contenido hídrico. De este modo podremos evaluar la relevancia de procesos termofílicos en los balances de carbono suelo-atmósfera y sus implicaciones sobre el cambio climático 4 .
Bibliografía:
1 Portillo, MC, Santana, MM, González, JM. 2012. Presence and potencial role of thermophilic 2 González, JM, Portillo, MC, Piñeiro-Vidal, M. 2015. Latitude dependent underestimation of microbial extracellular enzyme activity in soils. International Journal of Environmental Science and Technology 12: 2427-2434
3 Santana, MM, González, JM. 2015. Hight temperature microbial activity in upper soil layers. FEMS Microbiology Letters 362: 1-4
4 Davidson, EA, Janssens LA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165-173, Proyectos CGL2014-58762-P del MINECO y RNM2529 de la Junta de Andalucía, Peer Reviewed
30 y 60ºC. Las tasas de respiración a 60ºC en todos los suelos estudiados de época estival han sido bastante notorias, incluso llegando a ser superiores a la tasa de respiración a 30ºC en uno de los casos estudiados. Ello indica que los microorganismos termófilos pueden desempeñar un papel importante en la mineralización de la materia orgánica en suelos. Estos estudios se complementarán con comparaciones de respiración a distintas temperaturas y contenido hídrico. De este modo podremos evaluar la relevancia de procesos termofílicos en los balances de carbono suelo-atmósfera y sus implicaciones sobre el cambio climático 4 .
Bibliografía:
1 Portillo, MC, Santana, MM, González, JM. 2012. Presence and potencial role of thermophilic 2 González, JM, Portillo, MC, Piñeiro-Vidal, M. 2015. Latitude dependent underestimation of microbial extracellular enzyme activity in soils. International Journal of Environmental Science and Technology 12: 2427-2434
3 Santana, MM, González, JM. 2015. Hight temperature microbial activity in upper soil layers. FEMS Microbiology Letters 362: 1-4
4 Davidson, EA, Janssens LA. 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440: 165-173, Proyectos CGL2014-58762-P del MINECO y RNM2529 de la Junta de Andalucía, Peer Reviewed
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
Persistencia de enzimas extracelulares de microorganismos termófilos en suelos
Digital.CSIC. Repositorio Institucional del CSIC
- Gómez Fernández, Enrique J.
- Delgado Romero, José A.
- González Grau, Juan Miguel
XIII Reunión de la Red Nacional de Microorganismos Extremófilos Abstracts y Programa Científico Alicante,21-22 Octubre 2016, El papel de los microorganismos en los procesos biogeoquímicos del suelo es, hoy en día, incuestionable. En contra de lo establecido, en los últimos años se ha demostrado la presencia de microorganismos termófilos en suelos así como su relevancia 1 , además se ha observado la existencia de picos de máxima actividad enzimática en suelos correspondientes a las temperaturas óptimas de termófilos 2 . Sin embargo, queda por demostrar si dicha actividad se debe a alta producción de enzimas por los termófilos de suelos durante periodos cálidos o a la acumulación de sus enzimas debido a su mayor resistencia. Nuestro objetivo es determinar la persistencia de enzimas extracelulares de termófilos en comparación con mesófilos y evaluar su relevancia. La metodología utilizada se basa en Renella et al. 3 con modificaciones introducidas durante este estudio. Muestras de suelo se suplementan con nutrientes para potenciar el crecimiento de los microorganismos y producir suficiente cantidad de enzimas. Una vez alcanzada la máxima producción de enzimas se monitoriza su descenso a 20 y 60o C el cual sigue una cinética de primer orden.
Los resultados obtenidos muestran que la persistencia de las enzimas termófilicas es muy superior a la de mesófilos. Esto implica que las enzimas extracelulares de los termófilos podrían acumularse a lo largo del tiempo y formar un reservorio enzimático preparado para actuar tan pronto como la temperatura de la superficie del suelo aumente. Los microorganismos termófilos del suelo podrían beneficiarse de esta estrategia para aprovechar inmediatamente los periodos de temperaturas altas que limitan su desarrollo. Estos datos permitirían comprender y evaluar el papel de los microorganismos en sistemas áridos y procesos de desertización.
Bibliografía:
1 Portillo, MC, Santana M, González JM. 2012 Presence and potential role of thermophilic bacteria in temperate terrestrial environments. Naturwissencschaften. 99: 43-53
2 González, JM, Portillo MC, Piñero-Vidal M. 2014. Latitude-dependent understimation of microbial extracellular enzyme activity in soils. International Journal of Environmental Science and Technology 12: 2427-2434
3 Renella G, Szukics U, Landi L, Nannipieri P. 2007. Quantitative assessment of hydrolase production and persistence in soil. Biology and Fertility of Soils. 44: 321-329, Proyectos RNM 2529 de la Junta de Andalucía y CGL2014-58762-P del MINECO, Peer Reviewed
Los resultados obtenidos muestran que la persistencia de las enzimas termófilicas es muy superior a la de mesófilos. Esto implica que las enzimas extracelulares de los termófilos podrían acumularse a lo largo del tiempo y formar un reservorio enzimático preparado para actuar tan pronto como la temperatura de la superficie del suelo aumente. Los microorganismos termófilos del suelo podrían beneficiarse de esta estrategia para aprovechar inmediatamente los periodos de temperaturas altas que limitan su desarrollo. Estos datos permitirían comprender y evaluar el papel de los microorganismos en sistemas áridos y procesos de desertización.
Bibliografía:
1 Portillo, MC, Santana M, González JM. 2012 Presence and potential role of thermophilic bacteria in temperate terrestrial environments. Naturwissencschaften. 99: 43-53
2 González, JM, Portillo MC, Piñero-Vidal M. 2014. Latitude-dependent understimation of microbial extracellular enzyme activity in soils. International Journal of Environmental Science and Technology 12: 2427-2434
3 Renella G, Szukics U, Landi L, Nannipieri P. 2007. Quantitative assessment of hydrolase production and persistence in soil. Biology and Fertility of Soils. 44: 321-329, Proyectos RNM 2529 de la Junta de Andalucía y CGL2014-58762-P del MINECO, Peer Reviewed
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
Extracellular enzyme activities (glucosidase, phosphatase, protease) at 20ºC and 60ºC as a function of water activity for different soils. [Dataset]
Digital.CSIC. Repositorio Institucional del CSIC
- Gómez Fernández, Enrique J.
- Delgado Romero, José A.
- González Grau, Juan Miguel
Los datos pertenecen al trabajo: Gómez, E.J., Delgado, J.A., González, J.M. (2020) Environmental factors affect the response of microbial extracellular enzyme activity in soils when determined as a funciton of water availability and temperature. Ecology and Evolution (Artícle in press), Figure 2. Extracellular glucosidase activity at 20ºC (A) and 60ºC (B) as a function of water activity for different soils. Enzyme activity is presented as percentage of maximum
activity for each soil. Error bars represent the standard deviation. Symbols represent different soils: Black square, Galicia; Grey square, Aragón; Black triangle, Salamanca;
Grey triangle, Seville; Black circle and dashed line, Cádiz.
Figure 3. Extracellular phosphatase activity at 20ºC (A) and 60ºC (B) as a function of water activity for different soils. Enzyme activity is presented as percentage of maximum
activity for each soil. Error bars represent the standard deviation. Symbols represent different soils: Black square, Galicia; Grey square, Aragón; Black triangle, Salamanca;
Grey triangle, Seville; Black circle and dashed line, Cádiz. Figure 4. Extracellular protease activity at 20ºC (A) and 60ºC (B) as a function of water activity for different soils. Enzyme activity is presented as percentage of maximum activity for
each soil. Error bars represent the standard deviation. Symbols represent different soils: Black square, Galicia; Grey square, Aragón; Black triangle, Salamanca; Grey triangle,
Seville; Black circle and dashed line, Cádiz., This study was supported by funding through projects from the Spanish Ministry of Economy and Competitiveness (CGL2014-58762-P) and the Regional Government of Andalusia (RNM2529). These projects have been cofunded by FEDER funds., Peer reviewed
activity for each soil. Error bars represent the standard deviation. Symbols represent different soils: Black square, Galicia; Grey square, Aragón; Black triangle, Salamanca;
Grey triangle, Seville; Black circle and dashed line, Cádiz.
Figure 3. Extracellular phosphatase activity at 20ºC (A) and 60ºC (B) as a function of water activity for different soils. Enzyme activity is presented as percentage of maximum
activity for each soil. Error bars represent the standard deviation. Symbols represent different soils: Black square, Galicia; Grey square, Aragón; Black triangle, Salamanca;
Grey triangle, Seville; Black circle and dashed line, Cádiz. Figure 4. Extracellular protease activity at 20ºC (A) and 60ºC (B) as a function of water activity for different soils. Enzyme activity is presented as percentage of maximum activity for
each soil. Error bars represent the standard deviation. Symbols represent different soils: Black square, Galicia; Grey square, Aragón; Black triangle, Salamanca; Grey triangle,
Seville; Black circle and dashed line, Cádiz., This study was supported by funding through projects from the Spanish Ministry of Economy and Competitiveness (CGL2014-58762-P) and the Regional Government of Andalusia (RNM2529). These projects have been cofunded by FEDER funds., Peer reviewed
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
Thriving under High Temperature. Thermophiles and the Stability of Small Biomolecules
Digital.CSIC. Repositorio Institucional del CSIC
- González Grau, Juan Miguel
Póster presentado en el Thermophiles 2019. 15th International Congress on Thermophiles 2-6 Sep. 2019 Fukuoka, JAPAN, Thermophiles thrive under high temperature unlike other organisms. How temperature influence the functioning or denaturation of large macrobiomolecules has been studied for many years. For instance, there are multiple studies on protein thermal stability in thermophiles and their comparison to mesophiles (1). However, the capability of thermophiles to thrive under high temperatures also rely on other molecules, such as lowmolecular weight biomolecules some of which are highly sensitive to high temperatures. Besides, thermophiles, basically, use the same biomolecules than all other organisms. In order for life at high temperatures to be feasible, thermophiles need to be able to maintain the stability of those small, thermo-labile biomolecules, Funding from the Ministry of Economy and Competitiveness, CGL2014-58762-P, and Regional Autonomic Governement of Andalusia, RNM2529 and BIO288. FEDER cofunding in acknowledged., No
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
Soil Thermophiles under Adverse Conditions. The Effect of Temperature Cycling on Cell Survival and Growth
Digital.CSIC. Repositorio Institucional del CSIC
- Delgado Romero, José A.
- Gómez Fernández, Enrique J.
- González Grau, Juan Miguel
Póster presentado en el Thermophiles 2019. 15th International Congress on Thermophiles 2-6 Sep. 2019 Fukuoka, JAPAN, Soils and sediments are heterogeneous natural ecosystems holding great microbial diversity. These environments are very different of laboratory conditions where microorganisms are usually
isolated and cultured. For instance, soil upper layers experience drastic changes ruled by climate and soil microorganisms can be exposed to a broad range of temperatures1 (Figure 1).
In spite of current advancements on environmental microbiology, the functioning of microorganisms in nature remains scarcely known. Microorganisms present distinctive survival strategies to
face adverse conditions, for example, the formation of spores or dormancy states which involve physiological transformations2. At present, the presence of thermophilic microorganisms (e.g., genus Parageobacillus) at a vegetative state in soils and sediments is known3,4, suggesting that they can remain active over a wide range of environmental conditions although this strategy remains to be well understood., Ministerio de Economía y Competitividad, Excellence project CGL2014-58762-P, and Junta de Andalucía, Excelence project RNM2529. FEDER cofunding is acknowledged., No
isolated and cultured. For instance, soil upper layers experience drastic changes ruled by climate and soil microorganisms can be exposed to a broad range of temperatures1 (Figure 1).
In spite of current advancements on environmental microbiology, the functioning of microorganisms in nature remains scarcely known. Microorganisms present distinctive survival strategies to
face adverse conditions, for example, the formation of spores or dormancy states which involve physiological transformations2. At present, the presence of thermophilic microorganisms (e.g., genus Parageobacillus) at a vegetative state in soils and sediments is known3,4, suggesting that they can remain active over a wide range of environmental conditions although this strategy remains to be well understood., Ministerio de Economía y Competitividad, Excellence project CGL2014-58762-P, and Junta de Andalucía, Excelence project RNM2529. FEDER cofunding is acknowledged., No
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
La vida microbiana en condiciones adversas. ¿Los microorganismos viven frecuente o exporádicamente a tasas de crecimiento casi nulas?
Digital.CSIC. Repositorio Institucional del CSIC
- Delgado Romero, José A.
- Gómez Fernández, Enrique J.
- González Grau, Juan Miguel
Comunicación presentada en la XV Reunión de la Red Nacional de Microorganismos Extremófilos Programa y resúmenes (2018) Matalascañas (Huelva), 23-25 mayo 2018, Los ambientes naturales terrestres, como por ejemplo, suelos y sedimentos, son ecosistemas muy heterogéneos donde existen una gran variedad de condiciones que pueden llegar a ser extremas y que afectan a la actividad de los microorganismos. Los microorganismos se comportan diferente en la naturaleza que en cultivos en el laboratorio. Aunque el modo de vida de los microorganismos en la naturaleza es prácticamente desconocida, se sabe que pueden desarrollar estrategias de superviviencia durante períodos adversos (esporulación, dormancia y diversas transformaciónes fisiológicas) (Kjelleberg et al. 1987). Diversos microorganismos son capaces de vivir en condiciones muy diferentes a las consideradas óptimas; un ejemplo es Geobacillus, una bacteria termófila común en suelos (Portillo et al. 2012; Marchant et al. 2002). Para abordar el problema de si los microorganismos son capaces de vivir en condiciones adversas (lejanas de sus condiciones óptimas de laboratorio) utilizamos una serie de aislados del género Parageobacillus y los ensayamos en un bioreactor especial (retentostato) diseñado para alcanzar velocidades de crecimiento mínimas (cercanas a zero o un metabolismo de mantenimiento). Es un proceso de crecimiento en contínuo a una tasa de dilución muy baja (35 ml/día) en el que se mantienen las células. El retentostato desarrollado es muy flexible y puede adaptarse al crecimiento de cualquier microorganismo tanto aeróbico como anaeróbico y en un rango muy amlio de temperaturas. Estas células podrán ser estudiadas en detalle y así determinar las diversas propiedades que caracterizen ese estado fisiológico y evaluar su comportamiento. También son de gran interés las posibles aplicaciones prácticas derivadas de estos estadios, como la produción de metabolitos secundarios (e.g., antibióticos, entre otros). El empleo de técnicas como transcriptómica, proteómica y metabolómica proporcionarán datos de gran interés para ello. En esta ocasión, nos centramos en el desarrollo del retentostato necesario para la obtención de células microbianas a tasas de crecimiento muy reducidas y comprobamos que las bacterias son capaces de vivir bajo estas condiciones. Una segunda fase será el análisis en detalle de las propiedades de estas células en su sentido más amplio., Bibliografía
Portillo, MC, Santana, MM, González, JM. 2012. Presence and potencial role of thermophilic bacteria in temperate terrestrial environments. Naturwissenschaften 99: 43-53
Marchant, R, Banat, IM, Rahman, TJ, Berzano, M. 2002. The frecuency and characteristics of highly thermophilic bacteria in cool soil environments. Environmental Microbiology 4: 596-602
Kjelleberg, S, Hermansson, M, Mardén, P, Jones, GW. 1987. The transient phase between growth and no-growth of heterotrophic bacteria, with emphasis on the marine environment. Annual Reviews in Microbiology 41: 25-49, Financiación: Proyectos CGL2014-58762-P del MINECO y RNM2529 de la Junta de Andalucía, No
Portillo, MC, Santana, MM, González, JM. 2012. Presence and potencial role of thermophilic bacteria in temperate terrestrial environments. Naturwissenschaften 99: 43-53
Marchant, R, Banat, IM, Rahman, TJ, Berzano, M. 2002. The frecuency and characteristics of highly thermophilic bacteria in cool soil environments. Environmental Microbiology 4: 596-602
Kjelleberg, S, Hermansson, M, Mardén, P, Jones, GW. 1987. The transient phase between growth and no-growth of heterotrophic bacteria, with emphasis on the marine environment. Annual Reviews in Microbiology 41: 25-49, Financiación: Proyectos CGL2014-58762-P del MINECO y RNM2529 de la Junta de Andalucía, No
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
Maximum water activity corresponding to different enzyme activity and sampling sites [Dataset]
Digital.CSIC. Repositorio Institucional del CSIC
- Gómez Fernández, Enrique J.
- Delgado Romero, José A.
- González Grau, Juan Miguel
Los datos pertenecen al trabajo: Gómez, E.J., Delgado, J.A., González, J.M. (2020) Environmental factors affect the response of microbial extracellular enzyme activity in soils when determined as a funciton of water availability and temperature. Ecology and Evolution (Artícle in press), RDA plot showing the correspondence of water activity giving the optimum enzyme activity and environmental parameters. Capital letters (in black) represent the sampled soils (G, Galicia, P, Aragón; S, Salamanca; C, Sevilla; T, Cádiz). Arrows represent the environmental variables (soil texture, sand and silt content) contributing significantly to explain the variability of water activity resulting in optimum enzyme activity. The distribution of enzyme activities are presented in red: Glu_20, glucosidase activity at 20ºC; Glu_60, glucosidase activity at 60ºC; Pho_20, phosphatase activity at 20ºC; Pho_60, phosphatase activity at 60ºC; Pro_20, protease activity at 20ºC; Pro_60, protease activity at 60ºC. Figure, This study was supported by funding through projects from the Spanish Ministry of Economy and Competitiveness (CGL2014-58762-P) and the Regional Government of Andalusia (RNM2529). These projects have been cofunded by FEDER funds., Peer reviewed
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
Scattered plots showing the relationship between water activity, percentage of maximum enzyme activity at 20ºC and 60ºC and environmental variables [Dataset]
Digital.CSIC. Repositorio Institucional del CSIC
- Gómez Fernández, Enrique J.
- Delgado Romero, José A.
- González Grau, Juan Miguel
Los datos pertenecen al trabajo: Gómez, E.J., Delgado, J.A., González, J.M. (2020) Environmental factors affect the response of microbial extracellular enzyme activity in soils when determined as a funciton of water availability and temperature. Ecology and Evolution (Artícle in press), Scattered plots showing the relationship between water activity (X-axis), percentage of maximum enzyme activity estimates at 20ºC (left) and 60ºC (right) (proportional to diameter of circles) with environmental variables (Y-axis), specifically, two climaterelated parameters, the annual average of hot days (>30ºC)(A) and the annual average of consecutive days without precipitation (B), and soil-texture through the fraction of sand in the sampled soils (C). Symbol colors indicate the type of enzyme (Dark to light: Glucosidase, Phosphatase, Protease) and the analyzed soil (Greenish, Galicia (G); bluish, Aragón (P); brownish, Salamanca (S); reddish, Sevilla (C); purplish, Cádiz (T))., This study was supported by funding through projects from the Spanish Ministry of Economy and Competitiveness (CGL2014-58762-P) and the Regional Government of Andalusia (RNM2529). These projects have been cofunded by FEDER funds., Peer reviewed
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
Environmental factors affect the response of microbial extracellular enzyme activity in soils when determined as a function of water availability and temperature
Digital.CSIC. Repositorio Institucional del CSIC
- Gómez Fernández, Enrique J.
- Delgado Romero, José A.
- González Grau, Juan Miguel
10 figuras.- 6 figuras.- 1 tabla.- 52 referencias, Microorganisms govern soil carbon cycling with critical effects at local and global scales. The activity of microbial extracellular enzymes is generally the limiting step for soil organic matter mineralization. Nevertheless, the influence of soil characteristics and climate parameters on microbial extracellular enzyme activity (EEA) performance at different water availabilities and
temperatures remains to be detailed. Different soils from the Iberian Peninsula presenting distinctive climatic scenarios were sampled for these analyses. Results showed that microbial EEA
in the mesophilic temperature range present optimal rates under wet conditions (high water availability) while activity at the thermophilic temperature range (60ºC) could present maximum
EEA rates under dry conditions if the soil is frequently exposed to high temperatures. Optimum water availability conditions for maximum soil microbial EEA were influenced mainly by soil texture. Soil properties and climatic parameters are major environmental components ruling soil water availability and temperature which were decisive factors regulating soil microbial EEA. This
study contributes decisively to the understanding of environmental factors on the microbial EEA in soils, specifically on the decisive influence of water availability and temperature on EEA. Unlike
previous belief, optimum EEA in high temperature exposed soil upper layers can occur at low water availability (i.e., dryness) and high temperatures. This study shows the potential for a significant response by soil microbial EEA under conditions of high temperature and dryness due to a progressive environmental warming which will influence organic carbon decomposition at local and global scenarios., This study was supported by funding through projects from the Spanish Ministry of Economy and Competitiveness (CGL2014-58762-P) and the Regional Government of Andalusia (RNM2529). These projects have been cofunded by FEDER funds., Peer reviewed
temperatures remains to be detailed. Different soils from the Iberian Peninsula presenting distinctive climatic scenarios were sampled for these analyses. Results showed that microbial EEA
in the mesophilic temperature range present optimal rates under wet conditions (high water availability) while activity at the thermophilic temperature range (60ºC) could present maximum
EEA rates under dry conditions if the soil is frequently exposed to high temperatures. Optimum water availability conditions for maximum soil microbial EEA were influenced mainly by soil texture. Soil properties and climatic parameters are major environmental components ruling soil water availability and temperature which were decisive factors regulating soil microbial EEA. This
study contributes decisively to the understanding of environmental factors on the microbial EEA in soils, specifically on the decisive influence of water availability and temperature on EEA. Unlike
previous belief, optimum EEA in high temperature exposed soil upper layers can occur at low water availability (i.e., dryness) and high temperatures. This study shows the potential for a significant response by soil microbial EEA under conditions of high temperature and dryness due to a progressive environmental warming which will influence organic carbon decomposition at local and global scenarios., This study was supported by funding through projects from the Spanish Ministry of Economy and Competitiveness (CGL2014-58762-P) and the Regional Government of Andalusia (RNM2529). These projects have been cofunded by FEDER funds., Peer reviewed
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
Influence of Abiotic Factors Temperature and Water Content on Bacterial 2-Chlorophenol Biodegradation in Soils
Digital.CSIC. Repositorio Institucional del CSIC
- Moxley, Ellen
- Puerta Fernández, Elena
- Gómez Fernández, Enrique J.
- González Grau, Juan Miguel
5 páginas.- 2 figuras.- 18 referencias, Halogenated compounds are environmental pollutants toxic to humans and wildlife. Certain microorganisms degrade these halogenated compounds. However, little is known about the potential of microorganisms in bioremediation under extreme conditions, specifically in arid and semi-arid soils frequently exposed to high temperatures and desiccation periods. Arid and semi-arid environments and deserts make up vast areas of Earth's landmass. To investigate the degradation of 2-chlorophenol (2-CP) in soils as a function of temperature and water availability, three bacterial species were tested, two soil mesophiles of the genus Rhodococcus, R. opacus and R. erythropolis, and a soil thermophilic isolate, Parageobacillus thermoglucosidasius. Degradation trials in soil samples with these species were performed over a range of water activity from 1 to 0.4. At their optimum growth temperature, R. opacus showed maximum 2-CP degradation at water activity 0.9 sharply decreasing when lowering water activity. Nevertheless, the Parageobacillus isolate (optimum growth temperature 60°C) showed maximum 2-CP degradation rates at water activity 0.5 which represented highly desiccating conditions. Parageobacillus degradation of 2-CP was very low at water activity above 0.9. Thus, biodegradation of 2-CP in soils is possible even under arid conditions although different microbial species might be involved in this task depending on the interactions of abiotic factors and the diversity of microbial communities in soils. These results contribute to understand the potential biodegradation of specific halogenated compounds in the environment which is of great relevance to comprehend the fate of halogenated pollutants (i.e., 2-CP) in deserts, arid and semi-arid soils., This study was supported through funding from the Spanish Ministry of Economy and Competitiveness (CGL2014-58762-P; PCIN2016-129) and the Regional Government of Andalusia (RNM2529). These projects have been cofunded by FEDER funds. EM acknowledges funding through a Fullbright fellowship. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI)., Peer reviewed
Persistence of microbial extracellular enzymes in soils under different temperatures and water availabilities
Digital.CSIC. Repositorio Institucional del CSIC
- Gómez Fernández, Enrique J.
- Delgado Romero, José A.
- González Grau, Juan Miguel
10 páginas.- 3 figuras.- 1 tabla.- 36 referencias, Microbial extracellular enzyme activity (EEA) is critical for the decomposition of organic matter in soils. Generally, EEA represents the limiting step governing soil organic matter mineralization. The high complexity of soil microbial communities and the heterogeneity of soils suggest potentially complex interactions between microorganisms (and their extracellular enzymes), organic matter and physicochemical factors. Previous studies have reported the existence of maximum soil EEA at high temperatures although microorganisms thriving at high temperature represent a minority of soil microbial communities. To solve this paradox, we attempt to evaluate if soil extracellular enzymes from thermophiles could accumulate in soils. Methodology at this respect is scarce and an adapted protocol is proposed. Herein, the approach is to analyze the persistence of soil microbial extracellular enzymes at different temperatures and under a broad range of water availability. Results suggest that soil high temperature EEA presented longer persistence than enzymes with optimum activity at moderate temperature. Water availability influenced enzyme persistence, generally preserving for longer time the extracellular enzymes. These results suggests that hightemperature extracellular enzymes could be naturally accumulated in soils. Thus, soils could contain a reservoir of enzymes allowing a quick response by soil microorganisms to changing conditions. This study suggests the existence of novel mechanisms of interaction among microorganisms, their enzymes and the soil environment with relevance at local and global levels., This study was supported by funding through projects from the Spanish Ministry of Economy and Competitiveness (CGL2014-58762-P) and the Regional Government of Andalusia (RNM2529)., Peer reviewed
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
Influence of water availability and temperature on estimates of microbial extracellular enzyme activity
Digital.CSIC. Repositorio Institucional del CSIC
- Gómez Fernández, Enrique J.
- Delgado Romero, José A.
- González Grau, Juan Miguel
19 páginas.- 5 figuras. 2 tablas.- 50 referencias.- Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.10994#supplemental-information., oils are highly heterogeneous and support highly diverse microbial communities. Microbial extracellular enzymes breakdown complex polymers into small assimilable molecules representing the limiting step of soil organic matter mineralization. This process occurs on to soil particles although currently it is typically estimated in laboratory aqueous solutions. Herein, estimates of microbial extracellular enzyme activity were obtained over a broad range of temperatures and water availabilities frequently observed at soil upper layers. A Pseudomonas strain presented optimum extracellular enzyme activities at high water activity whereas a desiccation resistant bacterium (Deinococcus) and a soil thermophilic isolate (Parageobacillus) showed optimum extracellular enzyme activity under dried (i.e., water activities ranging 0.5-0.8) rather that wet conditions. Different unamended soils presented a distinctive response of extracellular enzyme activity as a function of temperature and water availability. This study presents a procedure to obtain realistic estimates of microbial extracellular enzyme activity under natural soil conditions of extreme water availability and temperature. Improving estimates of microbial extracellular enzyme activity contribute to better understand the role of microorganisms in soils., This study was supported by funding through projects from the Spanish Ministry of Economy and Competitiveness (CGL2014-58762-P) and the Regional Government of Andalusia (RNM2529 and BIO288). These projects have been cofunded by FEDER funds. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript, Peer reviewed
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
Microorganismos extremófilos. Vida microbiana más allá de sus condiciones óptimas
Digital.CSIC. Repositorio Institucional del CSIC
- Delgado Romero, José A.
320 páginas.- 56 figuras.- 10 tablas.- referencias.- Memoria que presenta para optar al título de Doctor en Biología Integrada por la Universidad de Sevilla, El estudio de los microorganismos termófilos ha tenido un gran auge en las últimas décadas debido a la aplicación de sus enzimas y moléculas en procesos biotecnológicos. En la actualidad, existe un déficit en cuanto a comprender cómo viven los microorganismos en la naturaleza y sus estrategias de persistencia y adaptación. La presente tesis estudia la vida de un microorganismo termófilo
aislado del suelo, Parageobacillus thermoglucosidasius 23.6, mas allá de la condiciones consideradas óptimas para su crecimiento. El desarrollo de bioreactores en continuo (quimiostato) con retención de células (retentostato), nos ha permitido cultivar la cepa 23.6 a tasas de crecimiento cercanas a cero (0,0002 h-1). Estas condiciones asumimos que son frecuentes en suelos, por la limitación de nutrientes, y por la influencia de ciclos diarios de temperatura (60 - 20º C). La secuenciación del genoma ha identificado 4 moléculas de ADN circular: El genoma principal o Tmp1, dos plásmidos, Tmp2 y Tmp3, y un bacteriófago, Tmp4, Su genoma ha servido de referencia para los análisis del transcriptoma. El pangenoma de la cepas de P. thermoglucosidaius es abierto y ha identificado puntos calientes de transferencia horizontal de genes llevados a cabo a través de diferentes estrategias: transformación, conjugación y traducción. El análisis del transcriptoma a tasas de crecimiento cercanas a cero reveló una gran sobreexpresión de genes relacionados con la obtención y búsqueda de energía, mecanismos de defensa y plasticidad genómica, permitiendo la adaptación de P. thermoglucosidasius 23.6 a nuevos ambientes y manteniendo su viabilidad. A bajas temperaturas (20º C) y tasa de crecimiento reducida (0.025h-1) hay una intensa respuesta transcripcional haciendo posible que la cepa 23.6 mantenga un metabolismo activo a bajas temperaturas que le permite responder rápidamente cuando las condiciones vuelvan eventualmente a ser óptimas para su crecimiento. Esta tesis contribuye a comprender el comportamiento de los microorganismos en ambientes naturales, y específicamente de la especie termófila modelo P. thermoglucosidasius, que sobrevive en condiciones consideradas adversas para su crecimiento manteniendo su viabilidad y persistencia en la naturaleza., El siguiente trabajo se ha realizado en el marco del proyecto CGL2014-58762-P del Plan Nacional de I+D+i, Proyectos de Excelencia 2015-2017, dentro del Programa Nacional de Formación de Personal Investigador, Peer reviewed
aislado del suelo, Parageobacillus thermoglucosidasius 23.6, mas allá de la condiciones consideradas óptimas para su crecimiento. El desarrollo de bioreactores en continuo (quimiostato) con retención de células (retentostato), nos ha permitido cultivar la cepa 23.6 a tasas de crecimiento cercanas a cero (0,0002 h-1). Estas condiciones asumimos que son frecuentes en suelos, por la limitación de nutrientes, y por la influencia de ciclos diarios de temperatura (60 - 20º C). La secuenciación del genoma ha identificado 4 moléculas de ADN circular: El genoma principal o Tmp1, dos plásmidos, Tmp2 y Tmp3, y un bacteriófago, Tmp4, Su genoma ha servido de referencia para los análisis del transcriptoma. El pangenoma de la cepas de P. thermoglucosidaius es abierto y ha identificado puntos calientes de transferencia horizontal de genes llevados a cabo a través de diferentes estrategias: transformación, conjugación y traducción. El análisis del transcriptoma a tasas de crecimiento cercanas a cero reveló una gran sobreexpresión de genes relacionados con la obtención y búsqueda de energía, mecanismos de defensa y plasticidad genómica, permitiendo la adaptación de P. thermoglucosidasius 23.6 a nuevos ambientes y manteniendo su viabilidad. A bajas temperaturas (20º C) y tasa de crecimiento reducida (0.025h-1) hay una intensa respuesta transcripcional haciendo posible que la cepa 23.6 mantenga un metabolismo activo a bajas temperaturas que le permite responder rápidamente cuando las condiciones vuelvan eventualmente a ser óptimas para su crecimiento. Esta tesis contribuye a comprender el comportamiento de los microorganismos en ambientes naturales, y específicamente de la especie termófila modelo P. thermoglucosidasius, que sobrevive en condiciones consideradas adversas para su crecimiento manteniendo su viabilidad y persistencia en la naturaleza., El siguiente trabajo se ha realizado en el marco del proyecto CGL2014-58762-P del Plan Nacional de I+D+i, Proyectos de Excelencia 2015-2017, dentro del Programa Nacional de Formación de Personal Investigador, Peer reviewed
Proyecto: MINECO/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/CGL2014-58762-P
Análisis genómico y funcional de un termófilo aislado del suelo, Parageobacillus thermoglucosidasius
Digital.CSIC. Repositorio Institucional del CSIC
- Delgado Romero, José A.
- González Grau, Juan Miguel
Comunicación oral presentada en el Sesiones telemáticas de la XVI Reunión de la Red Nacional de
Microorganismos Extremófilos del 17 de Diciembre 2020 al 25 Febrero 2021, La genómica es una ciencia que nos permite comprender la relación entre la información genética codificada en el ADN y la fisiología del microorganismo, así como aspectos bioquímicos y
evolutivos. Se secuenció y ensambló el genoma de Parageobacillus thermoglucosidasius 23.6, una cepa termófila aislada del suelo en el Parque Nacional de Doñana (Huelva) (CECT9776). La secuenciación identificó 4 moléculas de ADN circular: El genoma principal o Tmp1 (3.870.682 pb), Tmp2 (102283 bp), un megaplásmido, Tmp3 (50843 pb), un plásmido, y un bacteriófago, Tmp4 (55505 pb). El pangenoma de la cepas de P. thermoglucosidaius es abierto y ha identificado en Tmp1 y Tmp2 puntos calientes de transferencia horizontal de genes constituido por genes únicos y elementos genéticos móviles (transposasas). El sesgo del uso de codones establece una relación entre los genes únicos y Tmp3, que contiene en su secuencia un elemento integrativo y conjugativo. El bacteriófago identificado pertenece a la familia Syphoviridae y no está integrado en el genoma principal. El gran número de regiones CRISPR presentes en Tmp1 y la homología de 11 espaciadores con Tmp4 podría explicar porque el fago no se integra en el genoma principal. La información genómica de Parageobacillus thermoglucosidasius 23.6 sugiere que podría tener la plasticidad de incorporar ADN a su genoma a través de diferentes estrategias de transferencia horizontal de genes (transformación, conjugación y traducción), lo que facilitaría su capacidad de adaptación a nuevos medios y a cambios producidos en el ambiente., Ministerio de Ciencia e Innovación (CGL2014-58762-P) incluyendo fondos (FEDER)., Peer reviewed
Microorganismos Extremófilos del 17 de Diciembre 2020 al 25 Febrero 2021, La genómica es una ciencia que nos permite comprender la relación entre la información genética codificada en el ADN y la fisiología del microorganismo, así como aspectos bioquímicos y
evolutivos. Se secuenció y ensambló el genoma de Parageobacillus thermoglucosidasius 23.6, una cepa termófila aislada del suelo en el Parque Nacional de Doñana (Huelva) (CECT9776). La secuenciación identificó 4 moléculas de ADN circular: El genoma principal o Tmp1 (3.870.682 pb), Tmp2 (102283 bp), un megaplásmido, Tmp3 (50843 pb), un plásmido, y un bacteriófago, Tmp4 (55505 pb). El pangenoma de la cepas de P. thermoglucosidaius es abierto y ha identificado en Tmp1 y Tmp2 puntos calientes de transferencia horizontal de genes constituido por genes únicos y elementos genéticos móviles (transposasas). El sesgo del uso de codones establece una relación entre los genes únicos y Tmp3, que contiene en su secuencia un elemento integrativo y conjugativo. El bacteriófago identificado pertenece a la familia Syphoviridae y no está integrado en el genoma principal. El gran número de regiones CRISPR presentes en Tmp1 y la homología de 11 espaciadores con Tmp4 podría explicar porque el fago no se integra en el genoma principal. La información genómica de Parageobacillus thermoglucosidasius 23.6 sugiere que podría tener la plasticidad de incorporar ADN a su genoma a través de diferentes estrategias de transferencia horizontal de genes (transformación, conjugación y traducción), lo que facilitaría su capacidad de adaptación a nuevos medios y a cambios producidos en el ambiente., Ministerio de Ciencia e Innovación (CGL2014-58762-P) incluyendo fondos (FEDER)., Peer reviewed
Proyecto: MINECO//CGL2014-58762-P