Resultados totales (Incluyendo duplicados): 24
Encontrada(s) 3 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332071
Dataset. 2022

SUPPORTING INFORMATION PD2GA NANORODS AS HIGHLY ACTIVE BIFUNCTIONAL CATALYSTS FOR ELECTROSYNTHESIS OF ACETIC ACID COUPLED WITH HYDROGEN PRODUCTION

  • Wang, Qiuxia
  • Liu, Junfeng
  • Li, Tong
  • Zhang, Ting
  • Arbiol, Jordi
  • Yan, Suxia
  • Wang, Yong
  • Li, Huaming
  • Cabot, Andreu
11 pages. -- Fig. S1. Extra structure characterization of the Pd2Ga NRs. (a,b) HRTEMmicrographand the corresponding indexed power spectrum observed along the corresponding[001] (a) and [342] (b) zone axis of the orthorhombic Pnma Pd2Ga structure. (c) STEM-EELS elemental composition maps. -- Fig. S2. XRD pattern of as-synthesized Pd2Ga using 0.2 mmol of Pd(acac)2 and0.1mmol of Ga(acac)3 in the reaction. -- Fig. S3. SEM-EDS spectrum of Pd2Ga NRs. -- Fig. S4. (a-c) CV curves of Pd2Ga/C (a), Pd/C (b) and Pt/C (c) catalysts in 0.5MKOH with a scan rate of 20, 40, 60, 80 and 100 mV s-1. (d) Linear fit of the current density at 0.156 V as a function of scan rate from 20 to 100 mV s-1. -- Fig. S5. Nyquist plots of the catalysts at 0.8 V vs. RHE in 0.5 MKOHwith 0.5Methanol solution. -- Fig. S6. Comparison of the specific and mass activity of Pd2Ga/C, Pd/Cand Pt/Ccatalysts after 12 h CA measurements. -- Fig. S7. EOR CA curves of Pd2Ga catalyst reactivated by cycling every 1000 s inathree-electrode system with 0.5 M KOH and 0.5 M ethanol as electrolyte. -- Fig. S8. (a) 1H NMR analysis of the electrolyte before and after CA measurement. (b) 1H NMR analysis of acetic acid added in KOH and KOH + ethanol solution. -- Fig. S9. Potential-time curves of the Pd2Ga/C catalyst at current densities of 10mAcm-2 in 0.5 M KOH with ethanol solution. -- Fig. S10. Comparison of the current density of Pd2Ga/C, Pd/C and Pt/C catalysts after 15 h CA measurements in the two-electrode coupled system. -- Fig. S11. XRD Pattern (a) and TEM images of Pd2Ga/C in cathode (b) and anode (c) of the two-electrode electrolyzer after long-term stability measurement. -- Fig. S12. crystal structural models of Pd (111) and Pd2Ga (211). -- Fig. S13. DFT calculated models of Pd (a) and Pd2Ga (b) active sites with adsorbedreactive species from different EOR reaction states. -- Fig. S14. (a) CV curves of the catalysts in 0.5 M H2SO4 with 0.5 Methanol solution. (b) Polarization curves of catalysts in 0.5 M H2SO4 with 0.5 Methanol solution. (c) LSV curves of the assembled cells in 0.5 M H2SO4 with 0.5 Methanol solution. (d) CA measurements of the assembled cells at 1.0 V in 0.5 M H2SO4 with 0.5 Methanol solution. -- Fig. S15. DFT calculated models of OH- adsorbed on different sites of Pd2Ga (211) surface. -- Table S1. Comparison of specific activity, mass activity and stability of Pd- or Pt-based catalysts for EOR in alkaline media., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/332071
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332071
HANDLE: http://hdl.handle.net/10261/332071
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332071
PMID: http://hdl.handle.net/10261/332071
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332071
Ver en: http://hdl.handle.net/10261/332071
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332071

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332073
Dataset. 2022

SUPPORTING INFORMATION ROOM TEMPERATURE AQUEOUS-BASED SYNTHESIS OF COPPER-DOPED LEAD SULFIDE NANOPARTICLES FOR THERMOELECTRIC APPLICATIONS

  • Li, Mengyao
  • Liu, Yu
  • Zhang, Yu
  • Chang, Cheng
  • Zhang, Ting
  • Yang, Dawei
  • Xiao, Ke
  • Arbiol, Jordi
  • Ibáñez, María
  • Cabot, Andreu
6 pages. -- Figure S1. Pb 4f and S 2p high resolution XPS spectra obtained from the PbS nanoparticles. -- Figure S2. XRD patterns of PbS nanoparticles with and without H2-reducing treatment. -- Figure S3. SEM images and EDX spectra of a) PbS nanoparticles and b) PbS powders after annealing at 600℃ for 3h with H2/Ar atmosphere. -- Figure S4. Histograms of the grain size distribution obtained from the cross section SEM image of the a) PbS pellet without reduction process, and b) PbS pellet with reduction process. SEM images are shown in Figure 3. -- Figure S5. XRD patterns of the Pb1-xCuxS a) nanoparticles and b) annealed powder. -- Figure S6. a) XRD patterns of the SPS sintered Pb1-xCuxS pellets; b) Expanded view of the regions corresponding to the PbS (200) diffraction peak. -- Figure S7. The function of the Cu concentration on the lattice parameters of the Pb1-xCuxS pellets: a) Lattice parameter a=b=c (Å); b) Volume of Cell (Å 3). -- Figure S8. Cross-section SEM image and EDX compositional maps of a Pb0.955Cu0.045S pellet. -- Figure S9. EELS chemical composition maps obtained from the red squared area of the STEM micrograph of the Pb0.955Cu0.045S pellet. -- Table S1. Pb1-xCuxS nanoparticle composition as measured by SEM-EDX and crystal domain size as obtained from XRD data using Scherrer equation. -- Table S2. Hall charge carrier concentration (n), mobility () and effective mass (m*) of Pb1- xCuxS pellets at room temperature., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/332073
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332073
HANDLE: http://hdl.handle.net/10261/332073
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332073
PMID: http://hdl.handle.net/10261/332073
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332073
Ver en: http://hdl.handle.net/10261/332073
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332073

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332343
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. FUNCT. MATER., DOI: 10.1002/ADFM.202200529 ENHANCED POLYSULFIDE CONVERSION WITH HIGHLY CONDUCTIVE AND ELECTROCATALYTIC IODINE-DOPED BISMUTH SELENIDE NANOSHEETS IN LITHIUM–SULFUR BATTERIES

  • Li, Mengyao
  • Yang, Dawei
  • Jacas Biendicho, Jordi
  • Han, Xu
  • Zhang, Chaoqi
  • Liu, Kun
  • Diao, Jiefeng
  • Li, Junshan
  • Wang, Jing
  • Heggen, Marc
  • Dunin-Borkowski, Rafal E.
  • Wang, Jiaao
  • Henkelman, Graeme
  • Morante, Joan Ramón
  • Arbiol, Jordi
  • Chou, Shu-Lei
  • Cabot, Andreu
14 pages. -- PDF file includes: Details of Theoretical calculations. -- Figure S1. (a) SEM images of the Bi2Se3 nanosheets. (b) XRD patterns of Bi2Se3 nanosheets. (c) HRTEM images of the Bi2Se3 nanosheets and its corresponding power spectrum. (d) EELS chemical composition maps obtained from the red squared area of the STEM micrograph. -- Figure S2. Bi 4f and Se 3d high-resolution XPS spectra. -- Figure S3. XRD pattern of I-Bi2Se3/S. -- Figure S4. TGA curve of I-Bi2Se3/S composite measured in N2 with a sulfur loading ratio of 70.2 wt%. -- Figure S5. Nitrogen adsorption-desorption isotherms of as synthesized I-Bi2Se3 and IBi2Se3/S composites. -- Figure S6. DFT calculation results of optimized geometrical configurations of the surface (110) of Bi2Se3 with LiPS (Li2S, Li2S2, Li2S4, Li2S6, Li2S8 and S8). -- Figure S7. DFT calculation results of optimized geometrical configurations of the surface (110) of I-Bi2Se3 with LiPS (Li2S, Li2S2, Li2S4, Li2S6, Li2S8 and S8). -- Figure S8. Optimized adsorption configuration of Li2S decomposition on Bi2Se3. -- Figure S9. First five cycles of CV curves of (a) I-Bi2Se3/S, (b) Bi2Se3/S and (c) Super P/S performed at a scan rate of 0.1 mV s−1. -- Figure S10. Differential CV curves of (a) I-Bi2Se3/S, (c) Bi2Se3/S and (e) Super P/S. The baseline voltage and current density are defined as the value before the redox peak, where the variation on current density is the smallest, named as dI/dV=0. -- Figure S11. CV curves of (a) Bi2Se3/S, (b) Super P/S and (c) Plot of CV peak current for peaks C1, C2, and A versus the square root of the scan rates. -- Figure S12. The CV curve of I-Bi2Se3 as electrode measured in symmetric coin cell using an electrolyte without Li2S6. -- Figure S13. (a) Charge, and (b) discharge profiles of I-Bi2Se3/S, Bi2Se3/S, and Super P/S electrodes showing the overpotentials for conversion between soluble LiPS and insoluble Li2S2/Li2S. -- Figure S14. Galvanostatic charge−discharge profiles of (a) Bi2Se3/S and (b) Super P/S at different current densities range from 0.1C to 4C. -- Figure S15. (a,b) EIS spectra of (a) Bi2Se3/S and (b) Super P/S coin cells before and after cycling. The solid line corresponding to the fitting result from the equivalent circuit (c) and (d), and the Rs, Rin, Rct, and Zw stand for the resistance of the electrolyte, insoluble Li2S2/Li2S layer, interfacial charge-transportation, and semi-infinite Warburg diffusion, respectively; and CPE stands for the corresponding capacitance. (e) Different resistances of three coin cells were obtained from the equivalent circuit. -- Figure S16. XRD patterns of electrode materials after 100 cycles at 1C. -- Figure S17. Galvanostatic charge/discharge profiles of I-Bi2Se3/S at 0.5C under a lean electrolyte condition with a high sulfur loading of 5.2 mg cm-2. -- Figure S18. (a) SEM image of the Li-anode after cycling; (b) EDX mapping image of Lianode showing sulfur signal after cycling. -- Figure S19. SEM image of the cathode material after cycling, EDX spectra and EDX elemental maps for S, Se, Bi and I. -- Figure S20. I-Bi2Se3 optimized configuration as calculated by DFT. The distance between I and Bi is 3.15 Å, which is similar values than the bond lengths in bulk BiI3. -- Table S1 Summary of the comparison of I-Bi2Se3 electrochemical performance as host cathode for LSBs with state-of-the-art Bi-based or Se-based materials., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/332343
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332343
HANDLE: http://hdl.handle.net/10261/332343
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332343
PMID: http://hdl.handle.net/10261/332343
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332343
Ver en: http://hdl.handle.net/10261/332343
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332343

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336104
Dataset. 2023

SUPPORTING INFORMATION A CRMNFECONI HIGH ENTROPY ALLOY BOOSTING OXYGEN EVOLUTION/REDUCTION REACTIONS AND ZINC-AIR BATTERY PERFORMANCE

  • He, Ren
  • Yang, Linlin
  • Zhang, Yu
  • Wang, Xiang
  • Lee, Seung-Ho
  • Zhang, Ting
  • Li, Lingxiao
  • Liang, Zhifu
  • Chen, Jingwei
  • Li, Junshan
  • Ostovari Moghaddam, Ahmad
  • Llorca, Jordi
  • Ibáñez, María
  • Arbiol, Jordi
  • Xu, Ying
  • Cabot, Andreu
30 pages. -- PDF includes: Characterization. -- Density functional theory (DFT) calculations. -- Computational property description. -- Fig. S1. EDS composition of the ternary alloys: FeCoNi, MnFeNi, MnCoNi, and MnFeCo. -- Fig. S2. XRD pattern of the ternary alloys: FeCoNi, MnFeNi, MnCoNi, and MnFeCo. -- Fig. S3. (a) ICP-OES composition, (b) XRD pattern, (c) TEM image, and (d) HRTEM images of a MnFeCoNi quaternary alloy. -- Fig. S4. (a) ICP-OES composition, (b) XRD pattern, (c) TEM image and EDS chemical composition maps, and (d) HRTEM images of a CuMnFeCoNi HEA. -- Fig. S5. Slices of electron density difference of CrMnFeCoNi in (a) side view, (b) front view, and (c) top view. The contour around the atoms represents electron accumulation (red) or electron depletion (blue). -- Fig. S6. Slices of electron density difference of CuMnFeCoNi in (a) side view, (b) front view, and (c) top view. The contour around the atoms represents electron accumulation (red) or electron depletion (blue). -- Fig. S7. OER performance of the ternary alloys. (a) LSV curves, (b) corresponding overpotential at 10 mA/cm2, (c) corresponding Tafel plots, and (d) EIS spectra. -- Fig. S8. (a-g) CV curves with different scan rates of different HEA, quaternary alloy, and ternary alloys in 1.0 M KOH showing the double layer capacitance without electrochemical reactions. (h) Current density at 0.961V vs. RHE plotted against the scan rate and fitted to a linear region to estimate the capacitance. -- Fig. S9. ICP-OES composition of a CrMnFeCoNi HEA after stability test. -- Fig. S10. XRD pattern of CrMnFeCoNi before and after OER stability measurements. -- Fig. S11. HRTEM image of CrMnFeCoNi after OER measurements. -- Fig. S12. In situ Raman spectra of CrMnFeCoNi during OER measurements. -- Fig. S13. High-resolution XPS spectra of CrMnFeCoNi HEA after OER stability measurements. -- Fig. S14. H2O2 yield vs. potential from MnFeCoNi, CrMnFeCoNi, CuMnFeCoNi, and Pt/C. -- Fig. S15. Relaxed atomic configuration of the four fundamental steps of OER/ORR for the MnFeCoNi structure. -- Fig. S16. Relaxed atomic configuration of the four fundamental steps of OER/ORR for the CuMnFeCoNi structure. -- Fig. S17. Galvanostatic discharge-charge curves with 10 min discharge and 10 min charge cycles at a current density of 5 mA/cm2. -- Fig. S18. Galvanostatic discharge-charge curves with 10 min discharge and 10 min charge cycles at a current density of 12 mA/cm2. -- Table S1. Atomic radius and electronegativity of different elements. -- Table S2. Mn 2p, Fe 2p, Co 2p and Ni 2p XPS binding energies of MnFeCoNi, CrMnFeCoNi, and CuMnFeCoNi. -- Table S3. Comparison of the OER performance of the CrMnFeCoNi HEA with recently reported high entropy alloy catalysts. -- Table S4. ICP-OES results of the amount of metallic elements in the electrolyte after long-term tests. -- Table S5. Comparison of the bifunctional activities of various state-of-the-art electrocatalysts for OER and ORR. -- Table S6. Comparison of the ZAB performances obtained using state-of-the-art air cathodes, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/336104
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336104
HANDLE: http://hdl.handle.net/10261/336104
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336104
PMID: http://hdl.handle.net/10261/336104
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336104
Ver en: http://hdl.handle.net/10261/336104
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336104

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337257
Dataset. 2023

SUPPORTING INFORMATION PHOSPHOROUS INCORPORATION INTO PALLADIUM TIN NANOPARTICLES FOR THE ELECTROCATALYTIC FORMATE OXIDATION REACTION

  • Montaña-Mora, Guillem
  • Qi, Xueqiang
  • Wang, Xiang
  • Chacón-Borrero, Jesús
  • Martínez-Alanis, Paulina R.
  • Yu, Xiaoting
  • Li, Junshan
  • Xue, Qian
  • Arbiol, Jordi
  • Ibáñez, María
  • Cabot, Andreu
11 pages. -- Experimental and theoretical methods. -- Results., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337257
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337257
HANDLE: http://hdl.handle.net/10261/337257
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337257
PMID: http://hdl.handle.net/10261/337257
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337257
Ver en: http://hdl.handle.net/10261/337257
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337257

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337427
Dataset. 2023

COBALT–IRON OXYHYDROXIDE OBTAINED FROM THE METAL PHOSPHIDE: A HIGHLY EFFECTIVE ELECTROCATALYST FOR THE OXYGEN EVOLUTION REACTION AT HIGH CURRENT DENSITIES [DATASET]

  • Díez-García, María Isabel
  • Montaña-Mora, Guillem
  • Botifoll, Marc
  • Cabot, Andreu
  • Arbiol, Jordi
  • Qamar, Mohammad
  • Morante, Joan Ramón
12 pages. -- Figure S1-S18. -- Table S1. Atomic percentages determined by XPS in the electrodes after OER. -- Table S2. Comparison of the CoFeP-based electrodes for OER in 1 M KOH in chronological order., The development of high current density anodes for the oxygen evolution reaction (OER) is fundamental to manufacturing practical and reliable electrochemical cells. In this work, we have developed a bimetallic electrocatalyst based on cobalt–iron oxyhydroxide that shows outstanding performance for water oxidation. Such a catalyst is obtained from cobalt–iron phosphide nanorods that serve as sacrificial structures for the formation of a bimetallic oxyhydroxide through phosphorous loss concomitantly to oxygen/hydroxide incorporation. CoFeP nanorods are synthesized using a scalable method using triphenyl phosphite as a phosphorous precursor. They are deposited without the use of binders on nickel foam to enable fast electron transport, a highly effective surface area, and a high density of active sites. The morphological and chemical transformation of the CoFeP nanoparticles is analyzed and compared with the monometallic cobalt phosphide in alkaline media and under anodic potentials. The resulting bimetallic electrode presents a Tafel slope as low as 42 mV dec–1 and low overpotentials for OER. For the first time, an anion exchange membrane electrolysis device with an integrated CoFeP-based anode was tested at a high current density of 1 A cm–2, demonstrating excellent stability and Faradaic efficiency near 100%. This work opens up a way for using metal phosphide-based anodes for practical fuel electrosynthesis devices., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337427
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337427
HANDLE: http://hdl.handle.net/10261/337427
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337427
PMID: http://hdl.handle.net/10261/337427
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337427
Ver en: http://hdl.handle.net/10261/337427
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337427

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337437
Dataset. 2023

SUPPLEMENTARY MATERIALS OF THE ARTICLE FES2 DECORATED CARBON NANOFIBERS AS A SOLID PHASE CONVERSION CATHODE FOR LI-S BATTERIES

  • Jacas Biendicho, Jordi
  • Mazaira, Pedro
  • Avireddy, Hemesh
  • Zhang, Chaoqi
  • Tang, Peng-Yi
  • Missyul, Alexander
  • Trilla, Lluis
  • Arbiol, Jordi
  • Morante, Joan Ramón
  • Cabot, Andreu
2 pages. -- Table 1 Compares the performance and cost estimation of two selected references and FeS2-decorated CNF., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337437
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337437
HANDLE: http://hdl.handle.net/10261/337437
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337437
PMID: http://hdl.handle.net/10261/337437
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337437
Ver en: http://hdl.handle.net/10261/337437
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337437

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337648
Dataset. 2023

THERMOELECTRIC PERFORMANCE OF SURFACE-ENGINEERED CU1.5–XTE–CU2SE NANOCOMPOSITES [DATASET]

  • Xing, Congcong
  • Zhang, Yu
  • Xiao, Ke
  • Han, Xu
  • Liu, Yu
  • Nan, Bingfei
  • García Ramón, María Teresa
  • Lim, Khak Ho
  • Li, Junshan
  • Arbiol, Jordi
  • Poudel, Bed
  • Nozariasbmarz, Amin
  • Li, Wenjie
  • Ibáñez, María
  • Cabot, Andreu
14 pages. -- 1. Synthesize and characterization on Cu1.5Te NPs. -- 2. Surface treatment with SeL solution. -- 3. Characterization on consolidated pellets. -- 4. High temperature XRD and TE properties. -- 5. Stability and repeatability. -- 6. Anisotropic characterizations. -- Figures S1-S18. -- Table S1. Refined lattice parameters (from Rietveld refinement of the XRD patterns) of different crystal structures at corresponding temperatures. -- Table S2. Relative densities of Cu1.5Te, Cu1.5-xTe-OL and Cu1.5-xTe-Cu2Se pellets obtained from absolute values measured with the Archimedes’ method., Cu2–xS and Cu2–xSe have recently been reported as promising thermoelectric (TE) materials for medium-temperature applications. In contrast, Cu2–xTe, another member of the copper chalcogenide family, typically exhibits low Seebeck coefficients that limit its potential to achieve a superior thermoelectric figure of merit, zT, particularly in the low-temperature range where this material could be effective. To address this, we investigated the TE performance of Cu1.5–xTe–Cu2Se nanocomposites by consolidating surface-engineered Cu1.5Te nanocrystals. This surface engineering strategy allows for precise adjustment of Cu/Te ratios and results in a reversible phase transition at around 600 K in Cu1.5–xTe–Cu2Se nanocomposites, as systematically confirmed by in situ high-temperature X-ray diffraction combined with differential scanning calorimetry analysis. The phase transition leads to a conversion from metallic-like to semiconducting-like TE properties. Additionally, a layer of Cu2Se generated around Cu1.5–xTe nanoparticles effectively inhibits Cu1.5–xTe grain growth, minimizing thermal conductivity and decreasing hole concentration. These properties indicate that copper telluride based compounds have a promising thermoelectric potential, translated into a high dimensionless zT of 1.3 at 560 K., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337648
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337648
HANDLE: http://hdl.handle.net/10261/337648
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337648
PMID: http://hdl.handle.net/10261/337648
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337648
Ver en: http://hdl.handle.net/10261/337648
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337648

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337661
Dataset. 2023

SUPPORTING INFORMATION UNVEILING THE ROLE OF COUNTER-ANIONS IN AMORPHOUS TRANSITION METAL-BASED OXYGEN EVOLUTION ELECTROCATALYSTS

  • Wang, Xiang
  • Han, Xu
  • Du, Ruifeng
  • Liang, Zhifu
  • Zuo, Yong
  • Guardia, Pablo
  • Li, Junshan
  • Llorca, Jordi
  • Arbiol, Jordi
  • Zheng, Renji
  • Cabot, Andreu
17 pages. -- Characterization. -- Electrode preparation and electrochemical measurements. -- Density functional theory calculations. -- Figure S1-S17. -- Table S1. Elemental composition of ZnCo1.26Ni0.73Ox –SO4 before and after OER. -- Table S2. Assignment of FTIR characteristics peaks. -- Table S3. Comparison of OER activity of amorphous ZnCoxNiyOy-SO4 nanosheets with recently reported electrocatalysts in alkaline electrolyte. -- Table S4. Cdl and ECSAs of various catalysts. -- Table S5. Samples produced and characterized, including name, metal precursors type and nominal amount., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337661
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337661
HANDLE: http://hdl.handle.net/10261/337661
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337661
PMID: http://hdl.handle.net/10261/337661
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337661
Ver en: http://hdl.handle.net/10261/337661
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337661

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337728
Dataset. 2022

SULFATE-DECORATED AMORPHOUS–CRYSTALLINE COBALT-IRON OXIDE NANOSHEETS TO ENHANCE O–O COUPLING IN THE OXYGEN EVOLUTION REACTION [DATASET]

  • Wang, Xiang
  • Li, Junshan
  • Xue, Qian
  • Han, Xu
  • Xing, Congcong
  • Liang, Zhifu
  • Guardia, Pablo
  • Zuo, Yong
  • Du, Ruifeng
  • Balcells, Lluis
  • Arbiol, Jordi
  • Llorca, Jordi
  • Qi, Xueqiang
  • Cabot, Andreu
19 pages. -- Characterization. -- Electrode preparation and electrochemical measurements. -- Theoretical method. -- Table S1. Complete list of samples produced and characterized, including name, precursors and processing conditions. -- Figures S1-S25. -- Table S2. Comparison of OER activity of obtained catalyst. -- Table S3. Cdl and ECSAs of various catalysts. -- Table S4. Simulated parameters from the relevant equivalent circuits. -- Table S5. OER activity of CoFexOy-SO4 and other Co-based catalysts in 1M KOH electrolyte., The electrochemical oxygen evolution reaction (OER) plays a fundamental role in several energy technologies, which performance and cost-effectiveness are in large part related to the used OER electrocatalyst. Herein, we detail the synthesis of cobalt-iron oxide nanosheets containing controlled amounts of well-anchored SO42– anionic groups (CoFexOy-SO4). We use a cobalt-based zeolitic imidazolate framework (ZIF-67) as the structural template and a cobalt source and Mohr’s salt ((NH4)2Fe(SO4)2·6H2O) as the source of iron and sulfate. When combining the ZIF-67 with ammonium iron sulfate, the protons produced by the ammonium ion hydrolysis (NH4+ + H2O = NH3·H2O + H+) etch the ZIF-67, dissociating its polyhedron structure, and form porous assemblies of two-dimensional nanostructures through a diffusion-controlled process. At the same time, iron ions partially replace cobalt within the structure, and SO42– ions are anchored on the material surface by exchange with organic ligands. As a result, ultrathin CoFexOy-SO4 nanosheets are obtained. The proposed synthetic procedure enables controlling the amount of Fe and SO4 ions and analyzing the effect of each element on the electrocatalytic activity. The optimized CoFexOy-SO4 material displays outstanding OER activity with a 10 mA cm–2 overpotential of 268 mV, a Tafel slope of 46.5 mV dec–1, and excellent stability during 62 h. This excellent performance is correlated to the material’s structural and chemical parameters. The assembled nanosheet structure is characterized by a large electrochemically active surface area, a high density of reaction sites, and fast electron transportation. Meanwhile, the introduction of iron increases the electrical conductivity of the catalysts and provides fast reaction sites with optimum bond energy and spin state for the adsorption of OER intermediates. The presence of sulfate ions at the catalyst surface modifies the electronic energy level of active sites, regulates the adsorption of intermediates to reduce the OER overpotential, and promotes the surface charge transfer, which accelerates the formation of oxygenated intermediates. Overall, the present work details the synthesis of a high-efficiency OER electrocatalyst and demonstrates the introduction of nonmetallic anionic groups as an excellent strategy to promote electrocatalytic activity in energy conversion technologies., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337728
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337728
HANDLE: http://hdl.handle.net/10261/337728
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337728
PMID: http://hdl.handle.net/10261/337728
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337728
Ver en: http://hdl.handle.net/10261/337728
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337728

Advanced search