Resultados totales (Incluyendo duplicados): 15
Encontrada(s) 2 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330641
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. MATER., DOI: 10.1002/ADMA.202108835 A HIGH CONDUCTIVITY 1D Π–D CONJUGATED METAL–ORGANIC FRAMEWORK WITH EFFICIENT POLYSULFIDE TRAPPING-DIFFUSIONCATALYSIS IN LITHIUM–SULFUR BATTERIES

  • Yang, Dawei
  • Liang, Zhifu
  • Tang, Peng-Yi
  • Zhang, Chaoqi
  • Tang, Mingxue
  • Li, Qizhen
  • Jacas Biendicho, Jordi
  • Li, Junshan
  • Heggen, Marc
  • Dunin-Borkowski, Rafal E.
  • Xu, Ming
  • Llorca, Jordi
  • Arbiol, Jordi
  • Morante, Joan Ramón
  • Chou, Shu-Lei
  • Cabot, Andreu
22 pages. -- PDF file includes: Experimental Procedures; DFT calculations. -- Figure S1. (a,b) SEM image and EDX spectrum of Ni-MOF-1D sample. (c) High magnification STEM-HAADF image and EDX elemental mapping showing the elemental distribution in a Ni-MOF-1D sample. (d) XRD pattern of Ni-MOF-1D. -- Figure S2. High magnification HAADF-STEM images and detailed STEM-EDX elemental maps of a Ni-MOF 1D catalyst. -- Figure S3. iDPC-STEM images of Ni-MOF-1D with different magnifications. -- Figure S4. (a) XPS survey spectrum of Ni-MOF-1D. (b-d) High resolution XPS spectra of b) C 1s, c) N 1s, and d) Ni 2p. -- Table S1 Detailed EXAFS fitting model and parameters of Ni-MOF-1D. -- Figure S5. Wavelet transform (WT) analysis of (a) Ni-MOF-1D, (b) Ni foil, and (c) NiO. -- Figure S6. 1H NMR spectra of the obtained sample of Ni-MOF-1D. -- Figure S7. (a) Projected integral of the charge density in the non-periodic direction. (b) Projected integral of the charge density in the periodic direction of Ni-MOF-1D. -- Figure S8. Calculated electron localization function (ELF) of Ni-MOF-1D. -- Figure S9. (a) SEM-EDX compositional maps and (b) EDX spectra of S@Ni-MOF-1D. (c) XRD pattern of S@Ni-MOF-1D. (d) TGA profile from S@Ni-MOF-1D measured in N2 atmosphere. (e) N2 adsorption-desorption isotherms of Ni-MOF-1D and S@Ni-MOF-1D. Inset: Pore size distribution of Ni-MOF-1D and S@Ni-MOF-1D. -- Figure S10. Electrical conductivity of the two hosts tested before and after fusion with sulfur. -- Figure S11. Binding energies and adsorbed structures of LiPS on the surface of carbon calculated by DFT. -- Figure S12. Binding energies and adsorbed structures of LiPS on the surface of Ni-MOF-1D calculated by DFT. -- Figure S13. The optimized adsorption configuration of Li2S decomposition on carbon. -- Figure S14. The optimized adsorption configuration of Li2S decomposition on Ni-MOF-1D. -- Figure S15. (a) CV curve of Ni-MOF-1D as electrode measured in symmetric coin cell configuration using an electrolyte containing 1 mol L−1 LiTFSI dissolved in DOL/DME (v/v =1/1). (b) CV curves of symmetric cells from 1 to 50 cycles. (c) CV profiles of Ni-MOF-1D electrodes in symmetric cells at scan rate from 2 mV s-1 to 20 mV s-1. -- Figure S16. EIS spectra of symmetrical cells with different host materials, Ni-MOF-1D (a) and Super P (b), using an electrolyte containing 0.5 mol L-1 Li2S 6 and 1 mol L-1 LiTFSI dissolved in DOL/DME (v/v = 1/1). -- Figure S17. Onset potential for Li–S redox reactions. -- Figure S18. CV curves of S@Super P at different scan rates. -- Figure S19. First four cycles of CV curves of (a) S@Ni-MOF-1D, and (b) S@Super P performed at a scan rate of 0.1 mV s−1. -- Figure S20. Plots of CV peak current. -- Figure S21. Charge profiles of S@Ni-MOF-1D, and S@Super P electrodes showing the overpotentials for conversion between soluble LiPS and insoluble Li2S2/Li2S. --Figure S22. (a) Galvanostatic charge/discharge profiles of S@Super P electrodes at different current densities range from 0.1 C to 3 C. (b) EIS spectra of S@Super P coin cells before and after cycling. -- Figure S23. High-loading cycling performances with sulfur loadings of 7.6 mg cm-2 at 0.5 C of S@Ni-MOF-1D electrodes. -- Figure S24. (a) Galvanostatic charge/discharge profiles of S@Ni-MOF-1D at various current rates with a high sulfur loading of 4.3 mg cm−2. (b) Rate capability of S@Ni-MOF-1D cathodes loaded with 4.3 mg cm−2 of sulfur at various C rates. -- Figure S25. (a) TGA curve of a S@Ni-MOF-1D composite with a higher sulfur loading. (b) Cycling stability and Coulombic efficiency of the S@Ni-MOF-1D cathode with a higher sulfur loading at 1 C for 250 cycles. -- Table S2 Summary of recent reports on MOF-based sulfur host cathodes for LSBs., ICN2 acknowledges the support from the Severo Ochoa Programme (MINECO, Grant no. SEV-2017-0706). IREC and ICN2 are both funded by the CERCA Programme/Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/330641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330641
HANDLE: http://hdl.handle.net/10261/330641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330641
PMID: http://hdl.handle.net/10261/330641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330641
Ver en: http://hdl.handle.net/10261/330641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330641

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331721
Dataset. 2022

SUPPORTING INFORMATION ACTIVATING THE LATTICE OXYGEN OXIDATION MECHANISM IN AMORPHOUS MOLYBDENUM COBALT OXIDE NANOSHEETS FOR WATER OXIDATION

  • Wang, Xiang
  • Xing, Congcong
  • Liang, Zhifu
  • Guardia, Pablo
  • Han, Xu
  • Zuo, Yong
  • Li, Junshan
  • Cabot, Andreu
18 pages. -- PDF file includes: Experimental Section. -- Table S1. Complete list of samples produced and characterized, including name, precursors and processing conditions. -- Figure S1. SEM images of a) ZIF-67, b) Co3O4, c) Mo-Co MOFs-1h, d) MoCoxOy-100-1h, e) Mo-Co MOFs-3h, f) MoCoxOy-100-3h, g) Mo-Co MOFs-12h, and h) MoCoxOy-100-12h. -- Figure S2. SEM images of a) Co3O4, b) MoCoxOy-50, c) MoCoxOy-100 and d) MoCoxOy-200. -- Figure S3. (a-d) TEM and (e-f) HAADF STEM images of MoCoxOy-100. -- Figure. S4. EELS chemical composition maps obtained from the red squared area of the STEM micrograph of MoCoxOy-100. Individual Mo M4,5-edges at 227 eV (red), Co L2,3-edges at 779 eV (green), O K-edge at 532 eV and C K-edge at 284 eV (grey) and composites of Co-O and Mo-Co-O. -- Figure S5. XRD patterns of a) Mo-Co MOFs produced using different stirring times, b) MoCoxOy-100 samples obtained from the annealing of Mo-Co MOFs produced with different stirring times and c) MoCoxOy-100 after different annealing temperature. -- Figure S6. XRD patterns of a) Na2MoO4-ZIF-67 and b) Na2MoO4-CoOx after 350 °C calcination. -- Figure S7. a) SEM images of Na2MoO4-ZIF-67. b-c) SEM images and d) EDX spectrum of Na2MoO4-CoOx after 350 °C calcination. -- Figure S8. a-c) SEM images and b) EDX spectrum of MoCoxOy-50 after 350 °C calcination. -- Figure S9. a-c) SEM images and d) EDX spectrum of MoCoxOy-100 after 350 °C calcination. -- Figure S10. a-c) SEM images and d) EDX spectrum of MoCoxOy-200 after 350 °C calcination. -- Figure S11. a-c) SEM images and d) EDX spectrum of MoCoxOy-100 after 450 °C calcination. -- Figure S12. a-c) SEM images and d) EDX spectrum of MoCoxOy-100 after 550 °C calcination. -- Figure S13. Pore size distribution for a) Co3O4 and b) MoCoxOy-100. -- Figure S14. a-d) Co 2p high-resolution XPS spectra of Co3O4 and MoCoxOy with different molybdenum contents. -- Figure S15. a-d) O 1s high-resolution XPS spectra of Co3O4 and MoCoxOy with different molybdenum contents. -- Table S2. Surface ratios of Co and Mo chemical states, ratio of adsorved vs. lattice oxygen, and Mo/Co ratio as obtained from the XPS analysis. -- Table S3. Comparison of OER activity of obtained catalyst. -- Figure S16. Cyclic voltammograms for a) Mo-Co MOFs; b) IrO2; c) Co3O4 and d) MoCoxOy50; e) MoCoxOy-100; f) MoCoxOy-200 in the non-faradaic region of 0.90-1.00 V vs. RHE at various scan rates. -- Table S4. Cdl and ECSAs of various catalysts. -- Figure S17. a) OER polarization curves for MoCoOx-100 annealed at different tempratures and Na2MoO4-CoOx. b) ECSA-normalized OER polarization curves for Mo-Co MOFs, IrO2, Co3O4, MoCoxOy-50, MoCoxOy-100 and MoCoxOy-200 in 1.0 M KOH. -- Figure S18. OER polarization curves of a) MoCoxOy-100 before and after 2000 cycles. b) Co3O4 at different pH values. -- Figure S19. Time-dependent concentration of Mo and Co ions dissolved in the electrolyte during of MoCoxOy-100 a 18h chronoamperometric test at 282 mV vs. RHE. -- Table S5. Comparison of OER activity of amorphous MoCoxOy-100 nanosheets with recently reported Co-based electrocatalysts in alkaline electrolyte., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331721
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331721
HANDLE: http://hdl.handle.net/10261/331721
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331721
PMID: http://hdl.handle.net/10261/331721
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331721
Ver en: http://hdl.handle.net/10261/331721
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331721

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331792
Dataset. 2022

SUPPORTING INFORMATION CONTROLLED OXYGEN DOPING IN HIGHLY DISPERSED NI-LOADED G-C3N4 NANOTUBES FOR EFFICIENT PHOTOCATALYTIC H2O2 PRODUCTION

  • Du, Ruifeng
  • Xiao, Ke
  • Li, Baoying
  • Han, Xu
  • Zhang, Chaoqi
  • Wang, Xiang
  • Zuo, Yong
  • Guardia, Pablo
  • Li, Junshan
  • Chen, Jianbin
  • Arbiol, Jordi
  • Cabot, Andreu
16 pages. -- PDF file includes: 1.Characterization. -- 2. Electrocatalysis measurement. -- 3. Photocatalytic reduction of oxygen to hydrogen peroxide. -- 4. RRDE test. -- 5. Computational method. -- 6. Apparent quantum yield (AQY) calculations. -- 7. Structural characterization. -- 8. Elemental analysis. -- 9. Band structure. -- 10. Surface area and porosity. -- 11. Calibration for H2O2 quantification. -- 12. Photocatalytic activity. -- 13. Linear sweep voltammetry. -- 14. DFT calculation results. -- 15. Reaction mechanisms., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331792
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331792
HANDLE: http://hdl.handle.net/10261/331792
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331792
PMID: http://hdl.handle.net/10261/331792
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331792
Ver en: http://hdl.handle.net/10261/331792
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331792

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331806
Dataset. 2022

SUPPORTING INFORMATION ELECTROCHEMICAL REFORMING OF ETHANOL WITH ACETATE CO-PRODUCTION ON NICKEL COBALT SELENIDE NANOPARTICLES

  • Li, Junshan
  • Wang, Xiang
  • Xing, Congcong
  • Li, Luming
  • Mu, Shijia
  • Han, Xu
  • He, Ren
  • Liang, Zhifu
  • Martínez, Paulina
  • Yi, Yunan
  • Wu, Qianbao
  • Pan, Huiyan
  • Arbiol, Jordi
  • Cui, Chunhua
  • Zhang, Yu
  • Cabot, Andreu
15 pages. -- PDF file includes: 1. SEM-EDS characterization. -- 2. TEM characterization. -- 3. XPS characterization. -- 4. Electrochemical measurement. -- 5. IC measurement. -- 6. DFT calculations., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331806
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331806
HANDLE: http://hdl.handle.net/10261/331806
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331806
PMID: http://hdl.handle.net/10261/331806
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331806
Ver en: http://hdl.handle.net/10261/331806
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331806

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331919
Dataset. 2022

COBALT MOLYBDENUM NITRIDE-BASED NANOSHEETS FOR SEAWATER SPLITTING [DATASET]

  • Wang, Xiang
  • Han, Xu
  • Du, Ruifeng
  • Xing, Congcong
  • Qi, Xueqiang
  • Liang, Zhifu
  • Guardia, Pablo
  • Arbiol, Jordi
  • Cabot, Andreu
  • Li, Junshan
22 pages. -- PDF file includes: Structural characterization. -- Electrochemical Measurements. -- Faradaic efficiency (FE). -- Ionic strength compensation. -- Hypochlorite titration analysis. -- DFT Computational method. -- Figure S1 a-f) SEM images of the Mo-Co precursor. -- Figure S2 a-f) SEM images of MoN-Co2N. -- Figure S3. a-c) SEM images and d) EDS result of MoN-Co2N. -- Figure S4. a-f) TEM images of MoN-Co2N. -- Figure S5. a-c) TEM images and d-f) HAADF-STEM images of MoN-Co2N. -- Figure S6. TEM and HRTEM images of the MoN-Co2N. -- Figure S7. EELS chemical composition maps of MoN-Co2N obtained from the red squared area of the STEM micrograph. -- Figure S8. XRD patterns of MoN-Co2N, Mo-Co2N and CoxN compared with reference patterns of Co, Co4N, Co2N and MoN. -- Figure S9. a-c) SEM images and d) EDS result of Mo-Co2N. -- Figure S10. a-c) SEM images and d) EDS result of CoxN. -- Figure S11. Pore size distribution plot for MoN-Co2N and CoxN. -- Figure S12. Cyclic voltammograms for a) MoN-Co2N; b) Mo-Co2N; c) CoxN and d) Mo-Co precursors and e) IrO2 in the non-faradaic region of 1.12-1.22 V vs. RHE at various scan rates. -- Figure 13. a) N and b) Co partial and c) Total Density of states for Co2N and MoN-Co2N. -- Figure S14. The evolutions of local structural configurations for illustrating OER process of Co2N. (* represents the active site). -- Figure S15. Photograph of flasks containing seawater after adding KOH (left) and before adding KOH (right). -- Figure S16. Overall water/seawater splitting performance of MoN-Co2N ‖ MoN-Co2N and Pt/C ‖ IrO2 cells in 1 M KOH, 1 M KOH seawater, and untreated seawater. -- Figure S17. Overall water splitting performance of MoN-Co2N ‖ MoN-Co2N and Pt/C ‖ IrO2 cells in 1 M KOH seawater with and without ionic strength compensation. -- Figure S18. a) Digital photographs of the reaction and reference solutions for the iodometric titration, showing the absence of ClO− production in theº former case. b) Measured (dots) and theoretical (solid line) gaseous products by the two-electrode electrolyzer at a current of 50 mA cm-2 in 1 M KOH seawater. -- Figure S19. High-resolution XPS spectra of a) N 1s, b) Co 2p, c) Mo 3d for MoN-Co2N and MoN-Co2N after long-term reaction. -- Figure S20. a-b) TEM images, c-d) HAADF-STEM images, e-f) HRTEM of MoN-Co2N after long time reaction. -- Figure S21. EELS chemical composition maps of MoN-Co2N after long time reaction obtained from the red squared area of the STEM micrograph. Individual C K-edge at 284 eV (orange), N K-edge at 401 eV (blue), Co L2,3-edges at 779 eV (red) and Mo M4,5-edges at 227 eV (green) and composites of Co-N and Mo-N. -- Table S1. Comparison of OER activity of MoN-Co2N with recently reported nitride electrocatalysts in 1.0 M KOH electrolyte. -- Table S2. Cdl and ECSAs of various catalysts. -- Table S3. Comparison of HER performance of MoN-Co2N with recently reported nitride electrocatalysts in 1.0 M KOH electrolyte. -- Table S4 Comparison of the overall water splitting of MoN-Co2N with previously reported electrocatalysts., The development of cost-effective bifunctional catalysts for water electrolysis is both a crucial necessity and an exciting scientific challenge. Herein, a simple approach based on a metal–organic framework sacrificial template to preparing cobalt molybdenum nitride supported on nitrogen-doped carbon nanosheets is reported. The porous structure of produced composite enables fast reaction kinetics, enhanced stability, and high corrosion resistance in critical seawater conditions. The cobalt molybdenum nitride-based electrocatalyst is tested toward both oxygen evolution reaction and hydrogen evolution reaction half-reactions using the seawater electrolyte, providing excellent performances that are rationalized using density functional theory. Subsequently, the nitride composite is tested as a bifunctional catalyst for the overall splitting of KOH-treated seawater from the Mediterranean Sea. The assembled system requires overpotentials of just 1.70 V to achieve a current density of 100 mA cm–2 in 1 M KOH seawater and continuously works for over 62 h. This work demonstrates the potential of transition-metal nitrides for seawater splitting and represents a step forward toward the cost-effective implementation of this technology., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331919
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331919
HANDLE: http://hdl.handle.net/10261/331919
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331919
PMID: http://hdl.handle.net/10261/331919
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331919
Ver en: http://hdl.handle.net/10261/331919
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331919

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331920
Dataset. 2022

ELECTROCHEMICAL CONVERSION OF ALCOHOLS INTO ACIDIC COMMODITIES ON NICKEL SULFIDE NANOPARTICLES [DATASET]

  • Li, Junshan
  • Tian, Xi
  • Wang, Xiang
  • Zhang, Ting
  • Spadaro, Maria Chiara
  • Arbiol, Jordi
  • Li, Luming
  • Zuo, Yong
  • Cabot, Andreu
11 pages. -- Figure S1. SEM image and EDS spectrum of the as-synthesized NiS NPs. -- Figure S2. NiS NPs: (a) XPS survey spectrum. (b-c) Corresponding Ni 2p3/2, and S 2p high resolution XPS spectra. -- Figure S3. Ni NPs: (a) XRD pattern. (b) Representative TEM micrograph and the corresponding size distribution. -- Figure S4. CV curves for the monometallic Ni NPs based electrode in 1 M KOH with the presence of 1 M methanol or ethanol in alkaline media at a scan rate of 50 mV s 1. -- Table S1. Fitting parameters for the Nyquist curve at 1.5 V in 1.0 M KOH with and without 1.0 M m ethanol or ethanol. -- Figure S5. Electrochemical performance dependence on alcohol concentration for Ni-based electrode in 1 M KOH electrolyte. -- Figure S6. Electrochemical activity of Ni-based electrode in 1 M KOH. -- Figure S 7 . (a) CV curves in the potential range of 0.9 1. 6 V at different scan rates . (b) Linear fitting between the peak current and scan rates from 10 to 50 mV s 1 . (c) Linear fitting between the peak current and square root of scan rates from 60 to 100 mV s 1. -- Table S2. Comparison of the alcohols oxidation performance between this work and previously reported electrocatalysts with a similar system. -- Figure S8. (a) CA test towards MOR and EOR on NiS NPs electrode over 10,000 s testing period in 1 M KOH at 1.6 V. (b) IC curve of the solution at the end of CA testing. -- Figure S9. (a) Survey XPS spectrum of the NiS-based electrode after 10,000 s testing period in 1 M KOH and 1 M ethanol at 1.6 V. (b) High-resolution Ni 2p XPS spectrum. (c) High-resolution S 2pXPS spectrum. -- Figure S10. (a) Optimized structural model of NiOOH SO 4 (b) DOS of Ni OOH and Ni OOH SO 4 regarding the Ni 3d orbitals., The electrocatalytic oxidation of alcohols is a potentially cost-effective strategy for the synthesis of valuable chemicals at the anode while simultaneously generating hydrogen at the cathode. For this approach to become commercially viable, high-activity, low-cost, and stable catalysts need to be developed. Herein, we demonstrate an electrocatalyst based on earth-abundant nickel and sulfur elements. Experimental investigations reveal the produced NiS displays excellent electrocatalytic performance associated with a higher electrochemical surface area (ECSA) and the presence of sulfate ions on the formed NiOOH surface in basic media. The current densities reached for the oxidation of ethanol and methanol at 1.6 V vs reversible hydrogen electrode (RHE) are up to 175.5 and 145.1 mA cm–2, respectively. At these high current densities, the Faradaic efficiency of methanol to formate conversion is 98% and that of ethanol to acetate is 81%. Density functional theory calculations demonstrate the presence of the generated sulfate groups to modify the electronic properties of the NiOOH surface, improving electroconductivity and electron transfer. Besides, calculations are used to determine the reaction energy barriers, revealing the dehydrogenation of ethoxy groups to be more favorable than that of methoxy on the catalyst surface, which explains the highest current densities obtained for ethanol oxidation., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331920
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331920
HANDLE: http://hdl.handle.net/10261/331920
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331920
PMID: http://hdl.handle.net/10261/331920
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331920
Ver en: http://hdl.handle.net/10261/331920
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331920

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336104
Dataset. 2023

SUPPORTING INFORMATION A CRMNFECONI HIGH ENTROPY ALLOY BOOSTING OXYGEN EVOLUTION/REDUCTION REACTIONS AND ZINC-AIR BATTERY PERFORMANCE

  • He, Ren
  • Yang, Linlin
  • Zhang, Yu
  • Wang, Xiang
  • Lee, Seung-Ho
  • Zhang, Ting
  • Li, Lingxiao
  • Liang, Zhifu
  • Chen, Jingwei
  • Li, Junshan
  • Ostovari Moghaddam, Ahmad
  • Llorca, Jordi
  • Ibáñez, Maria
  • Arbiol, Jordi
  • Xu, Ying
  • Cabot, Andreu
30 pages. -- PDF includes: Characterization. -- Density functional theory (DFT) calculations. -- Computational property description. -- Fig. S1. EDS composition of the ternary alloys: FeCoNi, MnFeNi, MnCoNi, and MnFeCo. -- Fig. S2. XRD pattern of the ternary alloys: FeCoNi, MnFeNi, MnCoNi, and MnFeCo. -- Fig. S3. (a) ICP-OES composition, (b) XRD pattern, (c) TEM image, and (d) HRTEM images of a MnFeCoNi quaternary alloy. -- Fig. S4. (a) ICP-OES composition, (b) XRD pattern, (c) TEM image and EDS chemical composition maps, and (d) HRTEM images of a CuMnFeCoNi HEA. -- Fig. S5. Slices of electron density difference of CrMnFeCoNi in (a) side view, (b) front view, and (c) top view. The contour around the atoms represents electron accumulation (red) or electron depletion (blue). -- Fig. S6. Slices of electron density difference of CuMnFeCoNi in (a) side view, (b) front view, and (c) top view. The contour around the atoms represents electron accumulation (red) or electron depletion (blue). -- Fig. S7. OER performance of the ternary alloys. (a) LSV curves, (b) corresponding overpotential at 10 mA/cm2, (c) corresponding Tafel plots, and (d) EIS spectra. -- Fig. S8. (a-g) CV curves with different scan rates of different HEA, quaternary alloy, and ternary alloys in 1.0 M KOH showing the double layer capacitance without electrochemical reactions. (h) Current density at 0.961V vs. RHE plotted against the scan rate and fitted to a linear region to estimate the capacitance. -- Fig. S9. ICP-OES composition of a CrMnFeCoNi HEA after stability test. -- Fig. S10. XRD pattern of CrMnFeCoNi before and after OER stability measurements. -- Fig. S11. HRTEM image of CrMnFeCoNi after OER measurements. -- Fig. S12. In situ Raman spectra of CrMnFeCoNi during OER measurements. -- Fig. S13. High-resolution XPS spectra of CrMnFeCoNi HEA after OER stability measurements. -- Fig. S14. H2O2 yield vs. potential from MnFeCoNi, CrMnFeCoNi, CuMnFeCoNi, and Pt/C. -- Fig. S15. Relaxed atomic configuration of the four fundamental steps of OER/ORR for the MnFeCoNi structure. -- Fig. S16. Relaxed atomic configuration of the four fundamental steps of OER/ORR for the CuMnFeCoNi structure. -- Fig. S17. Galvanostatic discharge-charge curves with 10 min discharge and 10 min charge cycles at a current density of 5 mA/cm2. -- Fig. S18. Galvanostatic discharge-charge curves with 10 min discharge and 10 min charge cycles at a current density of 12 mA/cm2. -- Table S1. Atomic radius and electronegativity of different elements. -- Table S2. Mn 2p, Fe 2p, Co 2p and Ni 2p XPS binding energies of MnFeCoNi, CrMnFeCoNi, and CuMnFeCoNi. -- Table S3. Comparison of the OER performance of the CrMnFeCoNi HEA with recently reported high entropy alloy catalysts. -- Table S4. ICP-OES results of the amount of metallic elements in the electrolyte after long-term tests. -- Table S5. Comparison of the bifunctional activities of various state-of-the-art electrocatalysts for OER and ORR. -- Table S6. Comparison of the ZAB performances obtained using state-of-the-art air cathodes, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/336104
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336104
HANDLE: http://hdl.handle.net/10261/336104
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336104
PMID: http://hdl.handle.net/10261/336104
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336104
Ver en: http://hdl.handle.net/10261/336104
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336104

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337257
Dataset. 2023

SUPPORTING INFORMATION PHOSPHOROUS INCORPORATION INTO PALLADIUM TIN NANOPARTICLES FOR THE ELECTROCATALYTIC FORMATE OXIDATION REACTION

  • Montaña-Mora, Guillem
  • Qi, Xueqiang
  • Wang, Xiang
  • Chacón-Borrero, Jesús
  • Martinez-Alanis, Paulina R.
  • Yu, Xiaoting
  • Li, Junshan
  • Xue, Qian
  • Arbiol, Jordi
  • Ibáñez, María
  • Cabot, Andreu
11 pages. -- Experimental and theoretical methods. -- Results., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337257
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337257
HANDLE: http://hdl.handle.net/10261/337257
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337257
PMID: http://hdl.handle.net/10261/337257
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337257
Ver en: http://hdl.handle.net/10261/337257
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337257

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337648
Dataset. 2023

THERMOELECTRIC PERFORMANCE OF SURFACE-ENGINEERED CU1.5–XTE–CU2SE NANOCOMPOSITES [DATASET]

  • Xing, Congcong
  • Zhang, Yu
  • Xiao, Ke
  • Han, Xu
  • Liu, Yu
  • Nan, Bingfei
  • García Ramón, María Teresa
  • Lim, Khak Ho
  • Li, Junshan
  • Arbiol, Jordi
  • Poudel, Bed
  • Nozariasbmarz, Amin
  • Li, Wenjie
  • Ibáñez, María
  • Cabot, Andreu
14 pages. -- 1. Synthesize and characterization on Cu1.5Te NPs. -- 2. Surface treatment with SeL solution. -- 3. Characterization on consolidated pellets. -- 4. High temperature XRD and TE properties. -- 5. Stability and repeatability. -- 6. Anisotropic characterizations. -- Figures S1-S18. -- Table S1. Refined lattice parameters (from Rietveld refinement of the XRD patterns) of different crystal structures at corresponding temperatures. -- Table S2. Relative densities of Cu1.5Te, Cu1.5-xTe-OL and Cu1.5-xTe-Cu2Se pellets obtained from absolute values measured with the Archimedes’ method., Cu2–xS and Cu2–xSe have recently been reported as promising thermoelectric (TE) materials for medium-temperature applications. In contrast, Cu2–xTe, another member of the copper chalcogenide family, typically exhibits low Seebeck coefficients that limit its potential to achieve a superior thermoelectric figure of merit, zT, particularly in the low-temperature range where this material could be effective. To address this, we investigated the TE performance of Cu1.5–xTe–Cu2Se nanocomposites by consolidating surface-engineered Cu1.5Te nanocrystals. This surface engineering strategy allows for precise adjustment of Cu/Te ratios and results in a reversible phase transition at around 600 K in Cu1.5–xTe–Cu2Se nanocomposites, as systematically confirmed by in situ high-temperature X-ray diffraction combined with differential scanning calorimetry analysis. The phase transition leads to a conversion from metallic-like to semiconducting-like TE properties. Additionally, a layer of Cu2Se generated around Cu1.5–xTe nanoparticles effectively inhibits Cu1.5–xTe grain growth, minimizing thermal conductivity and decreasing hole concentration. These properties indicate that copper telluride based compounds have a promising thermoelectric potential, translated into a high dimensionless zT of 1.3 at 560 K., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337648
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337648
HANDLE: http://hdl.handle.net/10261/337648
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337648
PMID: http://hdl.handle.net/10261/337648
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337648
Ver en: http://hdl.handle.net/10261/337648
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337648

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337661
Dataset. 2023

SUPPORTING INFORMATION UNVEILING THE ROLE OF COUNTER-ANIONS IN AMORPHOUS TRANSITION METAL-BASED OXYGEN EVOLUTION ELECTROCATALYSTS

  • Wang, Xiang
  • Han, Xu
  • Du, Ruifeng
  • Liang, Zhifu
  • Zuo, Yong
  • Guardia, Pablo
  • Li, Junshan
  • Llorca, Jordi
  • Arbiol, Jordi
  • Zheng, Renji
  • Cabot, Andreu
17 pages. -- Characterization. -- Electrode preparation and electrochemical measurements. -- Density functional theory calculations. -- Figure S1-S17. -- Table S1. Elemental composition of ZnCo1.26Ni0.73Ox –SO4 before and after OER. -- Table S2. Assignment of FTIR characteristics peaks. -- Table S3. Comparison of OER activity of amorphous ZnCoxNiyOy-SO4 nanosheets with recently reported electrocatalysts in alkaline electrolyte. -- Table S4. Cdl and ECSAs of various catalysts. -- Table S5. Samples produced and characterized, including name, metal precursors type and nominal amount., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337661
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337661
HANDLE: http://hdl.handle.net/10261/337661
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337661
PMID: http://hdl.handle.net/10261/337661
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337661
Ver en: http://hdl.handle.net/10261/337661
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337661

Advanced search