Resultados totales (Incluyendo duplicados): 85
Encontrada(s) 9 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/275469
Dataset. 2021

DATA ON SPONGE SILICON STOCK AND FLUXES IN THE BAY OF BREST (FRANCE)

  • López-Acosta, María
  • Maldonado, Manuel
  • Grall, Jacques
  • Ehrhold, Axel
  • Sitjà, Cèlia
  • Galobart, Cristina
  • Pérez, Fiz F.
  • Leynaert, Aude
This Excel file includes the data and tracked calculations of the manuscript entitled "Sponge contribution to the silicon cycle of a diatom-rich shallow bay". It includes 7 spreadsheets with the following contents: - READ ME - Standing STOCK living sponges - Sponge Si consumption FLUX - Si RESERVOIR in sediments - Sponge Si FLUXES in sediments - DIATOM Si fluxes&stocks (Fig.5) - Calculations for discussion, This research was supported by: - the Spanish Ministry grants CTM2015-67221-R and MICIU: #PID2019-108627RB-I00 to Manuel Maldonado - the grant 12735 – AO2020 of the French National research program EC2CO to Jacques Grall - the ISblue project, Interdisciplinary graduate school for the blue planet (ANR-17-EURE-0015), co-funded by a grant from the French government under the program "Investissements d'Avenir", and the “Xunta de Galicia” postdoctoral grant IN606B-2019/002 to María López-Acosta., Peer reviewed

DOI: http://hdl.handle.net/10261/275469, https://doi.org/10.20350/digitalCSIC/14699
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/275469
HANDLE: http://hdl.handle.net/10261/275469, https://doi.org/10.20350/digitalCSIC/14699
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/275469
PMID: http://hdl.handle.net/10261/275469, https://doi.org/10.20350/digitalCSIC/14699
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/275469
Ver en: http://hdl.handle.net/10261/275469, https://doi.org/10.20350/digitalCSIC/14699
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/275469

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/277857
Dataset. 2022

PREDATION DATA OF THE SPONGE-FEEDING NUDIBRANCH DORIS VERRUCOSA ON THE SPONGE HYMENIACIDON PERLEVIS

  • López-Acosta, María
  • Potel, Clèmence
  • Gallinari, Morgane
  • Pérez, Fiz F.
  • Leynaert, Aude
This Excel file includes the metadata of the survey of the predation activity of the nudibranch Doris verrucosa on the sponge Hymeniacidon perlevis, This research was supported by: - the grant 12735 – AO2020 of the French National research program EC2CO - the ISblue project, Interdisciplinary graduate school for the blue planet (ANR-17-EURE-0015), co-funded by a grant from the French government under the program "Investissements d'Avenir", and the “Xunta de Galicia” postdoctoral grant IN606B-2019/002, No

Proyecto: //
DOI: http://hdl.handle.net/10261/277857, https://doi.org/10.20350/digitalCSIC/14718
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/277857
HANDLE: http://hdl.handle.net/10261/277857, https://doi.org/10.20350/digitalCSIC/14718
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/277857
PMID: http://hdl.handle.net/10261/277857, https://doi.org/10.20350/digitalCSIC/14718
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/277857
Ver en: http://hdl.handle.net/10261/277857, https://doi.org/10.20350/digitalCSIC/14718
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/277857

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279863
Dataset. 2022

COASTAL PH VARIABILITY IN THE BALEARIC SEA

  • Hendriks, Iris E.
  • Flecha, Susana
  • Pérez, Fiz F.
  • Alou-Font, Eva
  • Tintoré, Joaquín
[Description of methods used for collection/generation of data] In both stations a SAMI-pH (Sunburst Sensors LCC) was attached, at 1 m in the Bay of Palma and at 4 m depth in Cabrera. The pH sensors were measuring pH, in the total scale (pH𝑇T), hourly since December 2018 in the Bay of Palma and since November 2019 in Cabrera. The sensor precision and accuracy are < 0.001 pH and ± 0.003 pH units, respectively. Monthly maintenance of the sensors was performed including data download and surface cleaning. Temperature and salinity for the Cabrera mooring line was obtained starting November 2019 with a CT SBE37 (Sea-Bird Scientific©). Accuracy of the CT is ± 0.002 ∘C for temperature and ± 0.003 mS cm−1−1 for conductivity. Additionally, oxygen data from a SBE 63 (Sea-Bird Scientific ©) sensor attached to the CT in Cabrera were used. Accuracy of oxygen sensors is ± 2% for the SBE 63., [Methods for processing the data] Periodically water samplings for dissolved oxygen (DO), pH in total scale at 25 ∘C (pH𝑇25) and total alkalinity (TA) were obtained during the sensor maintenance campaigns. DO and (pH𝑇25) samples were collected in order to validate the data obtained by the sensors. DO concentrations were evaluated with the Winkler method modified by Benson and Krause by potentiometric titration with a Metrohm 808 Titrando with a accuracy of the method of ± 2.9 μmol kg−1μmol kg−1 and with an obtained standard deviation from the sensors data and the water samples collected of ± 5.9 μmol kg−1μmol kg−1. pH𝑇25T25 data was obtained by the spectrophotometric method with a Shimadzu UV-2501 spectrophotometer containing a 25 ∘C-thermostated cells with unpurified m-cresol purple as indicator following the methodology established by Clayton and Byrne by using Certified Reference Material (CRM Batch #176 supplied by Prof. Andrew Dickson, Scripps Institution of Oceanography, La Jolla, CA, USA). The accuracy obtained from the CRM Batch was of ± 0.0051 pH units and the precision of the method of ± 0.0034 pH units. The mean difference between the SAMI-pH and discrete samples was of 0.0017 pH units., Funding for this work was provided by the projects RTI2018-095441-B-C21 (SuMaEco) and, the BBVA Foundation project Posi-COIN and the Balearic Islands Government projects AAEE111/2017 and SEPPO (2018). SF was supported by a “Margalida Comas” postdoctoral scholarship, also from the Balearic Islands Government. FFP was supported by the BOCATS2 (PID2019-104279GB-C21) project funded by MCIN/AEI/10.13039/501100011033.This work is a contribution to CSIC’s Thematic Interdisciplinary Platform PTI WATER:iOS., Peer reviewed

DOI: http://hdl.handle.net/10261/279863, https://doi.org/10.20350/digitalCSIC/14749
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279863
HANDLE: http://hdl.handle.net/10261/279863, https://doi.org/10.20350/digitalCSIC/14749
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279863
PMID: http://hdl.handle.net/10261/279863, https://doi.org/10.20350/digitalCSIC/14749
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279863
Ver en: http://hdl.handle.net/10261/279863, https://doi.org/10.20350/digitalCSIC/14749
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279863

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279877
Dataset. 2022

COASTAL PH VARIABILITY RECONSTRUCTED THROUGH MACHINE LEARNING IN THE BALEARIC SEA

  • Hendriks, Iris E.
  • Flecha, Susana
  • Giménez-Romero, Alex
  • Tintoré, Joaquín
  • Pérez, Fiz F.
  • Alou-Font, Eva
  • Matías, Manuel A.
[Description of methods used for collection/generation of data] Data was acquired in both stations using a SAMI-pH (Sunburst Sensors LCC) was attached, at 1 m in the Bay of Palma and at 4 m depth in Cabrera. The pH sensors were measuring pH, in the total scale (pH𝑇), hourly since December 2018 in the Bay of Palma and since November 2019 in Cabrera. The sensor precision and accuracy are < 0.001 pH and ± 0.003 pH units, respectively. Monthly maintenance of the sensors was performed including data download and surface cleaning. Temperature and salinity for the Cabrera mooring line was obtained starting November 2019 with a CT SBE37 (Sea-Bird Scientific©). Accuracy of the CT is ± 0.002 ∘C for temperature and ± 0.003 mS cm−1−1 for conductivity. Additionally, oxygen data from a SBE 63 (Sea-Bird Scientific ©) sensor attached to the CT in Cabrera were used. Accuracy of oxygen sensors is ± 2% for the SBE 63., [Methods for processing the data] Once data (available at https://doi.org/XXX/DigitalCSIC/XXX) was validated, several processing steps were performed to ensure an optimal training process for the neural network models. First, all the data of the time series were re-sampled by averaging the data points obtaining a daily frequency. Afterwards, a standard feature-scaling procedure (min-max normalization) was applied to every feature (temperature, salinity and oxygen) and to pHT. Finally, we built our training and validations sets as tensors with dimensions (batchsize, windowsize, 𝑁features), where batchsize is the number of examples to train per iteration, windowsize is the number of past and future points considered and 𝑁features is the number of features used to predict the target series. Temperature values below 𝑇=12.5T=12.5 °C were discarded as they are considered outliers in sensor data outside the normal range in the study area. A BiDireccional Long Short-Term Memory (BD-LSTM) neural network was selected as the best architecture to reconstruct the pHT time series, with no signs of overfitting and achieving less than 1% error in both training and validation sets. Data corresponding to the Bay of Palma were used in the selection of the best neural network architecture. The code and data used to determine the best neural network architecture can be found in a GitHub repository mentioned in the context information., Funding for this work was provided by the projects RTI2018-095441-B-C21, RTI2018-095441-B-C22 (SuMaEco) and Grant MDM-2017-0711 (María de Maeztu Excellence Unit) funded by MCIN/AEI/10.13039/501100011033 and by the “ERDF A way of making Europe", the BBVA Foundation project Posi-COIN and the Balearic Islands Government projects AAEE111/2017 and SEPPO (2018). SF was supported by a “Margalida Comas” postdoctoral scholarship, also from the Balearic Islands Government. FFP was supported by the BOCATS2 (PID2019-104279GB-C21) project funded by MCIN/AEI/10.13039/501100011033.This work is a contribution to CSIC’s Thematic Interdisciplinary Platform PTI WATER:iOS (https://pti-waterios.csic.es/)., Peer reviewed

DOI: http://hdl.handle.net/10261/279877, https://doi.org/10.20350/digitalCSIC/14750
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279877
HANDLE: http://hdl.handle.net/10261/279877, https://doi.org/10.20350/digitalCSIC/14750
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279877
PMID: http://hdl.handle.net/10261/279877, https://doi.org/10.20350/digitalCSIC/14750
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279877
Ver en: http://hdl.handle.net/10261/279877, https://doi.org/10.20350/digitalCSIC/14750
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279877

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330562
Dataset. 2022

TABLE_6_ASSOCIATION MAPPING OF LATHYRUS SATIVUS DISEASE RESPONSE TO UROMYCES PISI REVEALS NOVEL LOCI UNDERLYING PARTIAL RESISTANCE.XLSX

  • Martins, Davide Coelho
  • Rubiales, Diego
  • Vaz Patto, María Carlota
Table S6 Candidate genes mapped within the genomic regions associated with the significantly associated SNPs detected in response to U. pisi. Chromosomal linkage disequilibrium (LD) decay was considered to limit the genomic regions were to look for candidate genes., Uromyces pisi ([Pers.] D.C.) Wint. is an important foliar biotrophic pathogen infecting grass pea (Lathyrus sativus L.), compromising their yield stability. To date, few efforts have been made to assess the natural variation in grass pea resistance and to identify the resistance loci operating against this pathogen, limiting its efficient breeding exploitation. To overcome this knowledge gap, the genetic architecture of grass pea resistance to U. pisi was investigated using a worldwide collection of 182 accessions through a genome-wide association approach. The response of the grass pea collection to rust infection under controlled conditions and at the seedling stage did not reveal any hypersensitive response but a continuous variation for disease severity, with the identification of promising sources of partial resistance. A panel of 5,651 high-quality single-nucleotide polymorphism (SNP) markers previously generated was used to test for SNP-trait associations, based on a mixed linear model accounting for population structure. We detected seven SNP markers significantly associated with U. pisi disease severity, suggesting that partial resistance is oligogenic. Six of the associated SNP markers were located in chromosomes 4 and 6, while the remaining SNP markers had no known chromosomal position. Through comparative mapping with the pea reference genome, a total of 19 candidate genes were proposed, encoding for leucine-rich repeat, NB-ARC domain, and TGA transcription factor family, among others. Results presented in this study provided information on the availability of partial resistance in grass pea germplasm and advanced our understanding of the molecular mechanisms of quantitative resistance to rust in grass pea. Moreover, the detected associated SNP markers constitute promising genomic targets for the development of molecular tools to assist disease resistance precision breeding., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330562
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330562
HANDLE: http://hdl.handle.net/10261/330562
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330562
PMID: http://hdl.handle.net/10261/330562
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330562
Ver en: http://hdl.handle.net/10261/330562
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330562

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330563
Dataset. 2022

TABLE_5_ASSOCIATION MAPPING OF LATHYRUS SATIVUS DISEASE RESPONSE TO UROMYCES PISI REVEALS NOVEL LOCI UNDERLYING PARTIAL RESISTANCE.XLSX

  • Martins, Davide Coelho
  • Rubiales, Diego
  • Vaz Patto, María Carlota
Table S5. Inflation factors observed for the models not accounting (Naïve) or accounting for population structure (Eigen), and familiar relatedness (Kinship) tested in the GWAS related to the inoculation experiments with U. pisi., Uromyces pisi ([Pers.] D.C.) Wint. is an important foliar biotrophic pathogen infecting grass pea (Lathyrus sativus L.), compromising their yield stability. To date, few efforts have been made to assess the natural variation in grass pea resistance and to identify the resistance loci operating against this pathogen, limiting its efficient breeding exploitation. To overcome this knowledge gap, the genetic architecture of grass pea resistance to U. pisi was investigated using a worldwide collection of 182 accessions through a genome-wide association approach. The response of the grass pea collection to rust infection under controlled conditions and at the seedling stage did not reveal any hypersensitive response but a continuous variation for disease severity, with the identification of promising sources of partial resistance. A panel of 5,651 high-quality single-nucleotide polymorphism (SNP) markers previously generated was used to test for SNP-trait associations, based on a mixed linear model accounting for population structure. We detected seven SNP markers significantly associated with U. pisi disease severity, suggesting that partial resistance is oligogenic. Six of the associated SNP markers were located in chromosomes 4 and 6, while the remaining SNP markers had no known chromosomal position. Through comparative mapping with the pea reference genome, a total of 19 candidate genes were proposed, encoding for leucine-rich repeat, NB-ARC domain, and TGA transcription factor family, among others. Results presented in this study provided information on the availability of partial resistance in grass pea germplasm and advanced our understanding of the molecular mechanisms of quantitative resistance to rust in grass pea. Moreover, the detected associated SNP markers constitute promising genomic targets for the development of molecular tools to assist disease resistance precision breeding., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330563
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330563
HANDLE: http://hdl.handle.net/10261/330563
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330563
PMID: http://hdl.handle.net/10261/330563
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330563
Ver en: http://hdl.handle.net/10261/330563
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330563

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330567
Dataset. 2022

TABLE_4_ASSOCIATION MAPPING OF LATHYRUS SATIVUS DISEASE RESPONSE TO UROMYCES PISI REVEALS NOVEL LOCI UNDERLYING PARTIAL RESISTANCE.XLSX

  • Martins, Davide Coelho
  • Rubiales, Diego
  • Vaz Patto, María Carlota
Table S4. Averaged DS scores (±standard error of the mean) measured from inoculation experiments with U. pisi, in accessions grouped based on their geographical origin, seed color, and seed size. The small letter represents significant differences (P-value ≤ 0.05) among accessions grouped by origin, seed size or color., Uromyces pisi ([Pers.] D.C.) Wint. is an important foliar biotrophic pathogen infecting grass pea (Lathyrus sativus L.), compromising their yield stability. To date, few efforts have been made to assess the natural variation in grass pea resistance and to identify the resistance loci operating against this pathogen, limiting its efficient breeding exploitation. To overcome this knowledge gap, the genetic architecture of grass pea resistance to U. pisi was investigated using a worldwide collection of 182 accessions through a genome-wide association approach. The response of the grass pea collection to rust infection under controlled conditions and at the seedling stage did not reveal any hypersensitive response but a continuous variation for disease severity, with the identification of promising sources of partial resistance. A panel of 5,651 high-quality single-nucleotide polymorphism (SNP) markers previously generated was used to test for SNP-trait associations, based on a mixed linear model accounting for population structure. We detected seven SNP markers significantly associated with U. pisi disease severity, suggesting that partial resistance is oligogenic. Six of the associated SNP markers were located in chromosomes 4 and 6, while the remaining SNP markers had no known chromosomal position. Through comparative mapping with the pea reference genome, a total of 19 candidate genes were proposed, encoding for leucine-rich repeat, NB-ARC domain, and TGA transcription factor family, among others. Results presented in this study provided information on the availability of partial resistance in grass pea germplasm and advanced our understanding of the molecular mechanisms of quantitative resistance to rust in grass pea. Moreover, the detected associated SNP markers constitute promising genomic targets for the development of molecular tools to assist disease resistance precision breeding., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330567
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330567
HANDLE: http://hdl.handle.net/10261/330567
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330567
PMID: http://hdl.handle.net/10261/330567
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330567
Ver en: http://hdl.handle.net/10261/330567
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330567

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330569
Dataset. 2022

TABLE_3_ASSOCIATION MAPPING OF LATHYRUS SATIVUS DISEASE RESPONSE TO UROMYCES PISI REVEALS NOVEL LOCI UNDERLYING PARTIAL RESISTANCE.XLSX

  • Martins, Davide Coelho
  • Rubiales, Diego
  • Vaz Patto, María Carlota
Table S3. Variance components and broad-sense heritability for the DS scores of U. pisi inoculation experiments., Uromyces pisi ([Pers.] D.C.) Wint. is an important foliar biotrophic pathogen infecting grass pea (Lathyrus sativus L.), compromising their yield stability. To date, few efforts have been made to assess the natural variation in grass pea resistance and to identify the resistance loci operating against this pathogen, limiting its efficient breeding exploitation. To overcome this knowledge gap, the genetic architecture of grass pea resistance to U. pisi was investigated using a worldwide collection of 182 accessions through a genome-wide association approach. The response of the grass pea collection to rust infection under controlled conditions and at the seedling stage did not reveal any hypersensitive response but a continuous variation for disease severity, with the identification of promising sources of partial resistance. A panel of 5,651 high-quality single-nucleotide polymorphism (SNP) markers previously generated was used to test for SNP-trait associations, based on a mixed linear model accounting for population structure. We detected seven SNP markers significantly associated with U. pisi disease severity, suggesting that partial resistance is oligogenic. Six of the associated SNP markers were located in chromosomes 4 and 6, while the remaining SNP markers had no known chromosomal position. Through comparative mapping with the pea reference genome, a total of 19 candidate genes were proposed, encoding for leucine-rich repeat, NB-ARC domain, and TGA transcription factor family, among others. Results presented in this study provided information on the availability of partial resistance in grass pea germplasm and advanced our understanding of the molecular mechanisms of quantitative resistance to rust in grass pea. Moreover, the detected associated SNP markers constitute promising genomic targets for the development of molecular tools to assist disease resistance precision breeding., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330569
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330569
HANDLE: http://hdl.handle.net/10261/330569
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330569
PMID: http://hdl.handle.net/10261/330569
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330569
Ver en: http://hdl.handle.net/10261/330569
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330569

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330571
Dataset. 2022

TABLE_2_ASSOCIATION MAPPING OF LATHYRUS SATIVUS DISEASE RESPONSE TO UROMYCES PISI REVEALS NOVEL LOCI UNDERLYING PARTIAL RESISTANCE.XLSX

  • Martins, Davide Coelho
  • Rubiales, Diego
  • Vaz Patto, María Carlota
Table S2. Primer sequences used for RT-qPCR analysis., Uromyces pisi ([Pers.] D.C.) Wint. is an important foliar biotrophic pathogen infecting grass pea (Lathyrus sativus L.), compromising their yield stability. To date, few efforts have been made to assess the natural variation in grass pea resistance and to identify the resistance loci operating against this pathogen, limiting its efficient breeding exploitation. To overcome this knowledge gap, the genetic architecture of grass pea resistance to U. pisi was investigated using a worldwide collection of 182 accessions through a genome-wide association approach. The response of the grass pea collection to rust infection under controlled conditions and at the seedling stage did not reveal any hypersensitive response but a continuous variation for disease severity, with the identification of promising sources of partial resistance. A panel of 5,651 high-quality single-nucleotide polymorphism (SNP) markers previously generated was used to test for SNP-trait associations, based on a mixed linear model accounting for population structure. We detected seven SNP markers significantly associated with U. pisi disease severity, suggesting that partial resistance is oligogenic. Six of the associated SNP markers were located in chromosomes 4 and 6, while the remaining SNP markers had no known chromosomal position. Through comparative mapping with the pea reference genome, a total of 19 candidate genes were proposed, encoding for leucine-rich repeat, NB-ARC domain, and TGA transcription factor family, among others. Results presented in this study provided information on the availability of partial resistance in grass pea germplasm and advanced our understanding of the molecular mechanisms of quantitative resistance to rust in grass pea. Moreover, the detected associated SNP markers constitute promising genomic targets for the development of molecular tools to assist disease resistance precision breeding., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330571
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330571
HANDLE: http://hdl.handle.net/10261/330571
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330571
PMID: http://hdl.handle.net/10261/330571
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330571
Ver en: http://hdl.handle.net/10261/330571
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330571

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330573
Dataset. 2022

TABLE_1_ASSOCIATION MAPPING OF LATHYRUS SATIVUS DISEASE RESPONSE TO UROMYCES PISI REVEALS NOVEL LOCI UNDERLYING PARTIAL RESISTANCE.XLSX

  • Martins, Davide Coelho
  • Rubiales, Diego
  • Vaz Patto, María Carlota
Table S1. Characterization of the grass pea accessions evaluated for the response to U. pisi based on seed color, size, and geographical origin, and respective BLUEs data., Uromyces pisi ([Pers.] D.C.) Wint. is an important foliar biotrophic pathogen infecting grass pea (Lathyrus sativus L.), compromising their yield stability. To date, few efforts have been made to assess the natural variation in grass pea resistance and to identify the resistance loci operating against this pathogen, limiting its efficient breeding exploitation. To overcome this knowledge gap, the genetic architecture of grass pea resistance to U. pisi was investigated using a worldwide collection of 182 accessions through a genome-wide association approach. The response of the grass pea collection to rust infection under controlled conditions and at the seedling stage did not reveal any hypersensitive response but a continuous variation for disease severity, with the identification of promising sources of partial resistance. A panel of 5,651 high-quality single-nucleotide polymorphism (SNP) markers previously generated was used to test for SNP-trait associations, based on a mixed linear model accounting for population structure. We detected seven SNP markers significantly associated with U. pisi disease severity, suggesting that partial resistance is oligogenic. Six of the associated SNP markers were located in chromosomes 4 and 6, while the remaining SNP markers had no known chromosomal position. Through comparative mapping with the pea reference genome, a total of 19 candidate genes were proposed, encoding for leucine-rich repeat, NB-ARC domain, and TGA transcription factor family, among others. Results presented in this study provided information on the availability of partial resistance in grass pea germplasm and advanced our understanding of the molecular mechanisms of quantitative resistance to rust in grass pea. Moreover, the detected associated SNP markers constitute promising genomic targets for the development of molecular tools to assist disease resistance precision breeding., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330573
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330573
HANDLE: http://hdl.handle.net/10261/330573
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330573
PMID: http://hdl.handle.net/10261/330573
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330573
Ver en: http://hdl.handle.net/10261/330573
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330573

Advanced search