Resultados totales (Incluyendo duplicados): 34354
Encontrada(s) 3436 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329933
Dataset. 2022

SUPPLEMENTARY MATERIAL EXTRACELLULAR VESICLES FROM LISTERIA MONOCYTOGENES-INFECTED DENDRITIC CELLS ALERT THE INNATE IMMUNE RESPONSE

  • Izquierdo-Serrano, Raúl
  • Fernández-Delgado, Irene
  • Moreno-Gonzalo, Olga
  • Martín-Gayo, Enrique
  • Calzada-Fraile, Diego
  • Ramírez-Huesca, Marta
  • Jorge, Inmaculada
  • Camafeita, Emilio
  • Abián, Joaquín
  • Vicente-Manzanares, Miguel
  • Veiga, Esteban
  • Vázquez, Jesús
  • Sánchez-Madrid, Francisco
1 Supplementary Data Fig. S1-6 Table S1-8 2 Supplementary Figures and Tables, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329933
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329933
HANDLE: http://hdl.handle.net/10261/329933
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329933
PMID: http://hdl.handle.net/10261/329933
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329933
Ver en: http://hdl.handle.net/10261/329933
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329933

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329935
Dataset. 2022

SUPPLEMENTARY MATERIAL: AHARONOV-BOHM CAGING AND INVERSE ANDERSON TRANSITION IN ULTRACOLD ATOMS

  • Li, Hang
  • Dong, Zhaoli
  • Longhi, Stefano
  • Liang, Qiang
  • Xie, Dizhou
  • Yan, Bo
Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329935
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329935
HANDLE: http://hdl.handle.net/10261/329935
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329935
PMID: http://hdl.handle.net/10261/329935
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329935
Ver en: http://hdl.handle.net/10261/329935
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329935

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329936
Dataset. 2022

DATA AND CODE: GLOBAL AND REGIONAL ECOLOGICAL BOUNDARIES EXPLAIN ABRUPT SPATIAL DISCONTINUITIES IN AVIAN FRUGIVORY INTERACTIONS

  • Martins, Lucas P.
  • Stouffer, Daniel B.
  • Blendinger, Pedro G.
  • Böhning-Gaese, Katrin
  • Buitrón-Jurado, Galo
  • Correia, Marta
  • Costa, José Miguel
  • Dehling, D. Matthias
  • Donatti, Camila I.
  • Emer, Carine
  • Galetti, Mauro
  • Heleno, Rubén H.
  • Jordano, Pedro
  • Menezes, Ícaro
  • Morante-Filho, José Carlos
  • Muñoz, Marcia C.
  • Pizo, Marco A.
  • Quitián, Marta
  • Ruggera, Román A.
  • Saavedra, Francisco
  • Santillán, Vinicio
  • Sanz D’Angelo, Virginia
  • Schleuning, Matthias
  • Silva, Luis Pascual da
  • Ribeiro da Silva, Fernando
  • Timóteo, Sérgio
  • Traveset, Anna
  • Vollstädt, Maximilian G. R.
  • Tylianakis, Jason M.
Zip-file including the Data and Code necessary for reproducing the analyses from 'Global and regional ecological boundaries explain abrupt spatial discontinuities in avian frugivory interactions'. General Information regarding the data is included as a pdf file in the download., Species interactions can propagate disturbances across space via direct and indirect effects, potentially connecting species at a global scale. However, ecological and biogeographic boundaries may mitigate this spread by demarcating the limits of ecological networks. We tested whether large-scale ecological boundaries (ecoregions and biomes) and human disturbance gradients increase dissimilarity among plant-frugivore networks, while accounting for background spatial and elevational gradients and differences in network sampling. We assessed network dissimilarity patterns over a broad spatial scale, using 196 quantitative avian frugivory networks (encompassing 1,496 plant and 1,004 bird species) distributed across 67 ecoregions, 11 biomes, and 6 continents. We show that dissimilarities in species and interaction composition, but not network structure, are greater across ecoregion and biome boundaries and along different levels of human disturbance. Our findings indicate that biogeographic boundaries delineate the world’s biodiversity of interactions and likely contribute to mitigating the propagation of disturbances at large spatial scales., Funding: University of Canterbury Doctoral Scholarship; The Marsden Fund, Award: UOC1705; Earthwatch Institute and Conservation International for financial support; Carlos Chagas Filho Foundation for Supporting Research in the Rio de Janeiro State – FAPERJ , Award: E-26/200.610/2022 Universidade Estadual de Santa Cruz, Award: Propp-UESC No. 00220.1100.1644/10-2018; Fundação de Amparo à Pesquisa do Estado da Bahia, Award: 0525/2016; Horizon 2020, Award: 787638; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Award: 173342 ARC SRIEAS, Award: SR200100005; National Scientific and Technical Research Council, Award: PIP 592; Instituto Venezolano de Investigaciones Científicas, Award: Project 898; Fundação de Amparo à Pesquisa do Estado de São Paulo, Award: 2014/01986-0; Fundação de Amparo à Pesquisa do Estado de São Paulo, Award: 2015/15172-7; Fundação de Amparo à Pesquisa do Estado de São Paulo, Award: 2016/18355-8; Fundação de Amparo à Pesquisa do Estado de São Paulo, Award: 2004/00810-3; Fundação de Amparo à Pesquisa do Estado de São Paulo, Award: 2008/10154-7; Brazilian Research Council, Award: 540481/01-7; Brazilian Research Council, Award: 304742/2019-8; Brazilian Research Council, Award: 300970/2015-3; Rufford Small Grants for Nature Conservation, Award: 22426–1; Rufford Small Grants for Nature Conservation, Award: 9163-1; Rufford Small Grants for Nature Conservation, Award: 11042-1; Deutsche Forschungsgemeinschaft, Award: PAK 825/1; Deutsche Forschungsgemeinschaft, Award: FOR 2730 Deutsche Forschungsgemeinschaft, Award: FOR 1246; Deutsche Forschungsgemeinschaft, Award: HE2041/20-1; Fundação para a Ciência e a Tecnologia, Award: CEECIND/00135/2017; Fundação para a Ciência e a Tecnologia, Award: UID/BIA/04004/2020; Fundação para a Ciência e a Tecnologia, Award: CEECIND/02064/2017, Peer reviewed

Proyecto: EC/H2020/787638
DOI: http://hdl.handle.net/10261/329936
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329936
HANDLE: http://hdl.handle.net/10261/329936
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329936
PMID: http://hdl.handle.net/10261/329936
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329936
Ver en: http://hdl.handle.net/10261/329936
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329936

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329937
Dataset. 2021

SUPPLEMENTARY TABLES AND LEGENDS STANDARDS RECOMMENDATIONS FOR THE EARTH BIOGENOME PROJECT

  • Lawniczak, Mara K. N.
  • Durbin, Richard
  • Flicek, Paul
  • Lindblad-Toh, Kerstin
  • Wei, Xiaofeng
  • Archibald, John M.
  • Baker, William J.
  • Belov, Katherine
  • Blaxter, Mark
  • Marqués-Bonet, Tomàs
  • Childers, Anna K.
  • Coddington, Jonathan A.
  • Crandall, Keith A.
  • Crawford, Andrew J.
  • Davey, Robert P.
  • Di Palma, Federica
  • Fang, Qi
  • Haerty, Wilfried
  • Hall, Neil
  • Hoff, Katharina J.
  • Howe, Kerstin
  • Jarvis, Erich D.
  • Johnson, Warren E.
  • Johnson, Rebecca N.
  • Kersey, Paul J.
  • Liu, Xin
  • López, José Víctor
  • Myers, Eugene W.
  • Vinnere Pettersson, Olga
  • Phillippy, Adam M.
  • Poelchau, Monica F.
  • Pruitt, kim D.
  • Rhie, Arang
  • Castilla-Rubio, Juan Carlos
  • Kumar Sahu, Sunil
  • Salmon, Nicholas A.
  • Soltis, Pamela S.
  • Swarbreck, David
  • Thibaud-Nissen, Francoise
  • Wang, Sibo
  • Wegrzyn, Jill L.
  • Zhang, Guojie
  • Zhang, He
  • Lewin, Harris A.
  • Richards, Stephen
Materials/Methods, Supplementary Text, Tables, Figures, and/or References, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329937
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329937
HANDLE: http://hdl.handle.net/10261/329937
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329937
PMID: http://hdl.handle.net/10261/329937
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329937
Ver en: http://hdl.handle.net/10261/329937
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329937

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329938
Dataset. 2022

SJ-JPG-1-TAM-10.1177_17588359211072621 – SUPPLEMENTAL MATERIAL FOR PROGNOSTIC VALUE OF THE IMMUNE TARGET CEACAM6 IN CANCER: A META-ANALYSIS [DATASET]

  • Burgos, Miguel
  • Cavero-Redondo, Iván
  • Álvarez-Bueno, Celia
  • Galán-Moya, Eva María
  • Pandiella, Atanasio
  • Amir, Eitan
  • Ocaña, Alberto
Supplemental material, sj-jpg-1-tam-10.1177_17588359211072621 for Prognostic value of the immune target CEACAM6 in cancer: a meta-analysis by Miguel Burgos, Iván Cavero-Redondo, Celia Álvarez-Bueno, Eva María Galán-Moya, Atanasio Pandiella, Eitan Amir and Alberto Ocaña in Therapeutic Advances in Medical Oncology, Instituto de Salud Carlos III, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329938
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329938
HANDLE: http://hdl.handle.net/10261/329938
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329938
PMID: http://hdl.handle.net/10261/329938
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329938
Ver en: http://hdl.handle.net/10261/329938
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329938

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329939
Dataset. 2022

SJ-JPG-2-TAM-10.1177_17588359211072621 – SUPPLEMENTAL MATERIAL FOR PROGNOSTIC VALUE OF THE IMMUNE TARGET CEACAM6 IN CANCER: A META-ANALYSIS [DATASET]

  • Burgos, Miguel
  • Cavero-Redondo, Iván
  • Álvarez-Bueno, Celia
  • Galán-Moya, Eva María
  • Pandiella, Atanasio
  • Amir, Eitan
  • Ocaña, Alberto
Supplemental material, sj-jpg-2-tam-10.1177_17588359211072621 for Prognostic value of the immune target CEACAM6 in cancer: a meta-analysis by Miguel Burgos, Iván Cavero-Redondo, Celia Álvarez-Bueno, Eva María Galán-Moya, Atanasio Pandiella, Eitan Amir and Alberto Ocaña in Therapeutic Advances in Medical Oncology, Instituto de Salud Carlos III, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329939
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329939
HANDLE: http://hdl.handle.net/10261/329939
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329939
PMID: http://hdl.handle.net/10261/329939
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329939
Ver en: http://hdl.handle.net/10261/329939
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329939

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329940
Dataset. 2022

SUPPLEMENTARY MATERIAL MS. ENTITLED A REPRODUCTIVE RESILIENCE INDEX FOR PELAGIC FISH IN THE SOUTHERN HUMBOLDT CURRENT LARGE MARINE ECOSYSTEM

  • Ospina-Álvarez, Andrés
  • Vásquez, Sebastián I.
  • Catalán, Ignacio Alberto
  • Lowerre-Barbieri, Susan
  • Arteaga, Marcos
  • De Juan, Silvia
12 pages. -- Section A 1. Brief discussion about the Fishbase vulnerability index. -- Table S1. Fishbase intrinsic extinction vulnerability (vulnerability) and resilience to fishing pressure (FB’s resilience) indexes. A detailed explanation of these indexes with their corresponding thresholds can be found in Cheung et al. 2005 and Musick 1999, respectively. The species are listed from lowest to highest value of vulnerability. The RRI proposed in this work is also presented. -- Section B 2. RRI in action: an evaluation over time and under different population size scenarios. -- Table S2. Reproductive traits scores for anchoveta (Engraulis ringens) and common sardine (Strangomera bentincki) in the HCLME for 2001-2007 and 2009-2016 periods. The selection of these periods is related to changes in population status (see Figure S5 for details). The sources correspond to databases and technical reports commissioned by the Chilean Undersecretariat of Fisheries to scientists and experts in the region with the aim of management. -- Figure S1. Spawning Biomass (SSB) relative to Spawning Biomass at Maximum Sustainable Yield (MSY) of anchoveta (Engraulis ringens) and common sardine (Strangomera bentincki) for 1997-2020 period. -- Table S3. Sensitivity analysis identifying the reproductive traits that have the most significant impact on RRI for each species. The highest variance and entropy reduction scores correspond to the reproductive traits that have the greatest impact on RRI. Only the top five traits with the greatest impact are shown. -- Table S4. Sensitivity analysis identifying the eight categories and 16 reproductive traits impact on RRI for Engraulis ringens. The highest variance and entropy reduction scores correspond to the categories and reproductive traits that have the greatest impact on RRI. -- Table S5. Sensitivity analysis identifying the eight categories and 16 reproductive traits impact on RRI for Strangomera bentincki. The highest variance and entropy reduction scores correspond to the categories and reproductive traits that have the greatest impact on RRI. -- Table S6. Sensitivity analysis identifying the eight categories and 16 reproductive traits impact on RRI for Spratus fuguensis. The highest variance and entropy reduction scores correspond to the categories and reproductive traits that have the greatest impact on RRI. -- Table S7. Sensitivity analysis identifying the eight categories and 16 reproductive traits impact on RRI for Sardinops sagax. The highest variance and entropy reduction scores correspond to the categories and reproductive traits that have the greatest impact on RRI. -- Table S8. Sensitivity analysis identifying the eight categories and 16 reproductive traits impact on RRI for Trachurus murphyi. The highest variance and entropy reduction scores correspond to the categories and reproductive traits that have the greatest impact on RRI., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329940
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329940
HANDLE: http://hdl.handle.net/10261/329940
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329940
PMID: http://hdl.handle.net/10261/329940
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329940
Ver en: http://hdl.handle.net/10261/329940
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329940

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329941
Dataset. 2022

SUPPORTING INFORMATION FOR A NOVEL Π-D CONJUGATED COBALT TETRAAZA[14]ANNULENE BASED ATOMICALLY DISPERSED ELECTROCATALYST FOR EFFICIENT CO2 REDUCTION

  • Liang, Zhifu
  • Zhang, Ting
  • Cao, Pengfei
  • Yoshida, Takefumin
  • Tang, Weiqiang
  • Wang, Xiang
  • Zuo, Yong
  • Tang, Peng-Yi
  • Heggen, Marc
  • Dunin-Borkowski, Rafal E.
  • Morante, Joan Ramón
  • Cabot, Andreu
  • Yamashita, Masahiro
  • Arbiol, Jordi
16 pages. -- Scheme S1. Scheme of the synthesis of Co-TAA. -- Figure S1. FT-IR spectra of the model compound Co-TAA, and Poly-TAA-Co powder. -- Figure S2. (a-b) HRTEM images and (c-d) STEM images of Poly-TAA-Co. -- Figure S3. EELS chemical composition maps from the red squared area of the STEM micrograph. Individual Co L2,3-edges at 779 eV (red), N K-edges at 401 eV (green), O K-edges at 532 eV (blue), and C-K edges at 284 eV (grey) and composites of Co-N, Co-O, Co-C, N-O and Co-N-C. -- Figure S4. (a)-(b) Survey, high resolution C1s XPS spectra of Poly-TAA powder, respectively. -- Figure S5. (a) Survey, high resolution C1s XPS spectra of Poly-TAA-Co powder, respectively. -- Figure S6 TGA analysis of Poly-TAA-Co under argon by heating to 600 ℃ at the rate of 5 ℃/min. -- Table S1. Co K-edge EXAFS fitting parameters for Poly-TAA-Co. -- Figure S7. N2 adsorption and desorption of Poly-TAA (a), Poly-TAA-Co (b) and Poly-TAA-Co-CNT (c), respectively. -- Figure S8. (a) Total current density of Poly-TAA-Co-CNT (7:3). (b) FE of CO and H2 at various potentials for Poly-TAA-Co-CNT (7:3). -- Figure S9 Current density for H2 production on Poly-TAA-Co-CNT(1:1) and Poly-TAA-Co-CNT(3:7). and. -- Figure S10. Nyquist plots of the electrochemical impedance spectroscopy (EIS) data of (a) Poly-TAA-Co, (b) Poly-TAA-Co-CNT(1:1) and Poly-TAA-Co-CNT(3:7) electrodes after the activation process. -- Figure S11. Linear sweep voltammetry (LSV) curves of (a) Poly-TAA-Co. -- Figure S12. FE of H2 at various potentials on Co-TAA-CNT(3:7), CoPc-CNT(3:7) and Poly-TAA-Co-CNT(3:7). -- Figure S13. XRD patterns of Poly-TAA-Co-CNT loaded on carbon paper before and after CO2RR. -- Figure S14 HAADF-STEM (a, c), BF-TEM (b, d) and HRTEM micrographs (c, e) of Poly-TAA-Co-CNT (3:7) sample (before and after CO2RR). -- Figure S15. EELS chemical composition maps obtained from the red squared area of the STEM micrograph. Individual Co L2,3-edges at 779 eV (red), N K-edges at 401 eV (green), O K-edges at 532 eV (blue), and C-K edges at 284 eV (grey) and composites of Co-N, Co-O, Co-C, N-O and Co-N-C. (Poly-TAA-Co-CNT (3:7), after electrocatalytic CO2RR). -- Figure S16. Calculated energy diagrams for CO2 to CO at -0.5 V conversion on CoPc and CoTAA molecule, respectively. -- Table S2. The comparison of electrochemical reduction of CO2 to CO for reported cobalt based electrocatalysts., ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and ICN2 and IREC are funded by the CERCA Programme /Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/329941
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329941
HANDLE: http://hdl.handle.net/10261/329941
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329941
PMID: http://hdl.handle.net/10261/329941
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329941
Ver en: http://hdl.handle.net/10261/329941
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329941

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329942
Dataset. 2022

SUPPORTING INFORMATION A PLUG, PRINT & PLAY INKJET PRINTING AND IMPEDANCE-BASED BIOSENSING TECHNOLOGY OPERATING THROUGH A SMARTPHONE FOR CLINICAL DIAGNOSTICS

  • Rosati, Giulio
  • Urban, Massimo
  • Zhao, Lei
  • Yang, Qiuyue
  • Carvalho Castro e Silva, Cecilia de
  • Bonaldo, Stefano
  • Parolo, Claudio
  • Nguyen, Emily P.
  • Ortega, Gabriel
  • Fornasiero, Pablo
  • Paccagnella, Alessandro
  • Merkoçi, Florind
13 pages. -- Table S1. Printer setting used for fabrication of the electrodes. -- Figure S1. Morphological comparison of the lines printed with Epson XP15000 and the standard Dimatix 2800. a, The lines are defined inline if printed along the printhead movement direction, and outline if perpendicular to it. The design consisted of 2 cm long lines with design width between 15 and 300 µm. b, Micrographs and SEM of both the surface and cross-sections of the lines. c, Interferometric data of 400 µm interdigitated line obtained with the Epson printer on Mitsubishi substrate. -- Figure S2. Comparison of the morphological and electrical performances of the Epson and Dimatix printers. Representation of the lines real width with respect to the theoretical one for Dimatix and Epson on Mitsubishi and Novacentrix substrates, for inlines (a), and outlines (b), for which Novacentrix resulted disconnected with Epson. c, Kinetics of stabilization of the lines resistance over time. d, Representation of the stabilized resistances of the lines with respect to the printing width and fitting with the first Ohm’s law. -- Figure S3. Simulation of the electric field uniformity for a simple 2 electrodes layout and optimization of the geometrical parameters. a, Device layout and magnification of the active window exposing the 2 electrodes to the testing solution. b, 3D rectangular cell used for the simulations representing the device electrodes in contact with the testing solution. c,f,i, Mesh structure of the 50 µm, 300 µm, 600 µm layouts (electrodes' length: 2 mm, electrodes' width: 50 µm / 300 µm / 600 µm, electrodes' gap: 200 µm). d,g,j, Electric potential isosurfaces for the 50 µm, 300 µm, and 600 µm layouts. e,h,k, Contour plots of the electric potential on 3 vertical section planes at the two ends of the electrodes and in the middle (indicated respectively with continuous, dashed and dotted lines). -- Figure S4. SEM cross-section of the wax treated devices. a. SEM cross-section of a wax device right after wax first layer printing. The layers visible from the bottom are PET, PVA coating and the first wax layer. b. SEM magnified cross-section of the PVA coating after the melting of the two wax layers printed on the device. No net division between PVA and wax are visible because the latter penetrated and saturated the first one. -- Figure S5. Pictures of the used devices. a. A4 sheet of the inkjet-printed devices after wax passivation and lamination. -- Table S2. Detailed description of the fabrication costs, including the sensors materials and equipment, and the smartphone readout. -- Figure S6. Schematic (a) and picture (b) of the simple electronic circuit to be connected to the smartphone audio jack for the EIS measurements on the biosensor. c. Comparison of the impedance spectra obtained with the portable EIS system and with a standard AutoLab potentiostat. The inset shows the electric scheme of the tested dummy cell. -- Figure S7. Bode diagrams (module left, phase right) of the measurements in PBS (blue circles) and artificial urine (red squares) on this work inkjet printed devices, commercially available MetroOhm silver interdigitated devices and gold screen-printed devices., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329942
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329942
HANDLE: http://hdl.handle.net/10261/329942
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329942
PMID: http://hdl.handle.net/10261/329942
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329942
Ver en: http://hdl.handle.net/10261/329942
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329942

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329943
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. FUNCT. MATER., DOI: 10.1002/ADFM.202112902 ANTIBACTERIAL FILMS BASED ON MOF COMPOSITES THAT RELEASE IODINE PASSIVELY OR UPON TRIGGERING BY NEAR- INFRARED LIGHT

  • Han, Xu
  • Balcerzak, Mateusz
  • Hernando Moriones, Oscar
  • Cano-Sarabia, Mary
  • Cortés, Pilar
  • Bastús, Neus G.
  • Puntes, Víctor F.
  • Llagostera, Montserrat
  • Imaz, Inhar
  • Maspoch, Daniel
18 pages. -- Figure S1. (a) Bright field STEM image of the synthesized AuNRs. (b) Bright field STEM image of the AuNR@SiO2 after the first silica-shell coating. -- Figure S2. (a) STEM micrographs of synthesized AuNR@UiO-66 composite before (left) and after (right) exposure to iodine gas at 75 °C for 3 hours. Note that the AuNRs were etched after having been exposed to the iodine. (b) STEM micrographs of the AuNR@SiO2@UiO-66 composite before (left) and after (right) exposure to iodine at 75 °C for 96 hours, confirming the stability of the silica-coated AuNRs. Scale bar: 500 nm. -- Figure S3. N2-sorption isotherm measurements at 77 K, and corresponding BET plots, for UiO-66 microbeads (a) and AuNR@SiO2@UiO-66 microbeads (b). -- Table S1. Summary of the maximum temperatures reached by each studied material upon irradiation with near-infrared lasers of different intensities. -- Figure S4. (a) Plot of time vs. temperature for AuNR@SiO2@UiO-66 microbeads irradiated for 1 minute with near infrared light at an intensity of 224 mW cm-2. (b) Thermal imaging of the UiO-66 (leftmost) when irradiated at 1000 mW cm-2, and AuNR@SiO2@UiO-66 microbeads when irradiated with an intensity of 52 mW cm-2 (left), 224 mW cm-2 (middle) and 1000 mW cm-2 (right). -- Figure S5. Thermogravimetric analysis curves for pristine UiO-66 microbeads (blue), iodineloaded UiO-66 microbeads (black), and iodine-loaded AuNR@SiO2@UiO-66 microbeads (red). -- Figure S6. (a) PXRD spectra of pristine UiO-66 (black), pristine AuNR@SiO2@UiO-66 (red), UiO-66 after desorption of iodine (blue), and AuNR@SiO2@UiO-66 after desorption of iodine (green). (b) HAADF-STEM micrograph of AuNR@SiO2@UiO-66 after 96-hour exposure to iodine at 75 °C. Scale bar: 100 nm. -- Figure S7. Release of iodine from I2@UiO-66 microbeads (black) and I2@AuNR@SiO2@UiO-66 microbeads (red), without any laser irradiation. Inset: zoomed section of graph. -- Figure S8. FE-SEM micrographs of cross-sections of the composite films containing AuNR@SiO2@UiO-66 microbeads at 0% (a), 8% (b), 25% (c) and 46 (d)% (w/w). -- Figure S9. TGA curves of the iodine-loaded composite films containing AuNR@SiO2@UiO- 66 microbeads at 0% (black), 8% (red), 25% (blue) and 46% (green) (w/w). -- Figure S10. Iodine release over time from the composite films containing AuNR@SiO2@UiO-66 microbeads at 46% (a) and 25% (b) (w/w), without any laser irradiation. -- Figure S11 (a) Stepwise release of iodine from a composite film containing I2@AuNR@SiO2@UiO-66 microbeads at 25% (w/w) irradiated with NIR light at 224 mW cm-2 and subjected to on/off switching. (b) Zoom on the stepwise release after its stabilization at the fifteenth cycle. -- Figure S12. Growth-inhibition zones induced by I2@UiO-66 microbeads (a, b) and I2@AuNR@SiO2@UiO-66 microbeads (c, d) against E. coli (a, c) or S. aureus (b, d) cultures, either after near-infrared light irradiation (left) or without irradiation (right). Ø: diameter of growth-inhibition zone. Disc diameter: 6 mm. -- Figure S13. Growth-inhibition zones induced by square sections of composite films containing iodine-loaded AuNR@SiO2@UiO-66 at 8% (a), 25% (b) and 46% (c) (w/w), against E. coli cultures, either after near-infrared light irradiation (left) or without irradiation (right). Ø: diameter of growth-inhibition zone. Film size: 1 cm2. Values are the average of at least five replicates ± standard deviation. -- Table S2. Growth-inhibition of composite films prepared at different iodine-containing microbead-loadings (8%, 25% or 46%) and tested on E. coli cultures., ICN2 is supported by the Severo Ochoa program from the Spanish MINECO (Grant No. SEV-2017-0706), Peer reviewed

DOI: http://hdl.handle.net/10261/329943
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329943
HANDLE: http://hdl.handle.net/10261/329943
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329943
PMID: http://hdl.handle.net/10261/329943
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329943
Ver en: http://hdl.handle.net/10261/329943
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329943

Advanced search