Sullivan minimal models of operad algebras

Cirici, Joana, Roig, Agustí
We prove the existence of Sullivan minimal models of operad algebras for a quite wide family of operads in the category of complexes of vector spaces over a field of characteristic zero. Our construction is an adaptation of Sullivan's original step by step construction to the setting of operad algebras. The family of operads that we consider includes all operads concentrated in degree 0 as well as their minimal models. In particular, this gives Sullivan minimal models for algebras over Com, Ass, and Lie, as well as over their minimal models Com∞, Ass∞, and Lie∞. Other interesting operads, such as the operad Ger encoding Gerstenhaber algebras, also fit in our study.
Repository: Recercat: Dipósit de la Recerca de Catalunya