A Gesture Recognition System for Detecting Behavioral Patterns of ADHD

Bautista Martín, Miguel Ángel, Hernández-Vela, Antonio, Escalera Guerrero, Sergio, Igual Muñoz, Laura, Pujol Vila, Oriol, Moya, Josep, Violant, Verónica, Anguera Argilaga, María Teresa
We present an application of gesture recognition using an extension of dynamic time warping (DTW) to recognize behavioral patterns of attention deficit hyperactivity disorder (ADHD). We propose an extension of DTW using one-class classifiers in order to be able to encode the variability of a gesture category, and thus, perform an alignment between a gesture sample and a gesture class. We model the set of gesture samples of a certain gesture category using either Gaussian mixture models or an approximation of convex hulls. Thus, we add a theoretical contribution to classical warping path in DTW by including local modeling of intraclass gesture variability. This methodology is applied in a clinical context, detecting a group of ADHD behavioral patterns defined by experts in psychology/psychiatry, to provide support to clinicians in the diagnose procedure. The proposed methodology is tested on a novel multimodal dataset (RGB plus depth) of ADHD children recordings with behavioral patterns. We obtain satisfying results when compared to standard state-of-the-art approaches in the DTW context.
Repository: Recercat: Dipósit de la Recerca de Catalunya