Resultados totales (Incluyendo duplicados): 34260
Encontrada(s) 3426 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330626
Dataset. 2022

IMAGE_2_INTEGRATING PHENOTYPIC AND GENE EXPRESSION LINKAGE MAPPING TO DISSECT RUST RESISTANCE IN CHICKLING PEA.TIF

  • Santos, Carmen
  • Martins, Davide Coelho
  • González-Bernal, María José
  • Rubiales, Diego
  • Vaz Patto, María Carlota
Rusts are among the most important foliar biotrophic fungal diseases in legumes. Lathyrus cicera crop can be severely damaged by Uromyces pisi, to which partial resistance has been identified. Nevertheless, the underlying genetic basis and molecular mechanisms of this resistance are poorly understood in L. cicera. To prioritise the causative variants controlling partial resistance to rust in L. cicera, a recombinant inbred line (RIL) population, segregating for response to this pathogen, was used to combine the detection of related phenotypic- and expression-quantitative trait loci (pQTLs and eQTLs, respectively). RILs’ U. pisi disease severity (DS) was recorded in three independent screenings at seedling (growth chamber) and in one season of exploratory screening at adult plant stage (semi-controlled field conditions). A continuous DS range was observed in both conditions and used for pQTL mapping. Different pQTLs were identified under the growth chamber and semi-controlled field conditions, indicating a distinct genetic basis depending on the plant developmental stage and/or the environment. Additionally, the expression of nine genes related to U. pisi resistance in L. cicera was quantified for each RIL individual and used for eQTL mapping. One cis-eQTL and one trans-eQTL were identified controlling the expression variation of one gene related to rust resistance – a member of glycosyl hydrolase family 17. Integrating phenotyping, gene expression and linkage mapping allowed prioritising four candidate genes relevant for disease-resistance precision breeding involved in adaptation to biotic stress, cellular, and organelle homeostasis, and proteins directly involved in plant defence., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330626
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330626
HANDLE: http://hdl.handle.net/10261/330626
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330626
PMID: http://hdl.handle.net/10261/330626
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330626
Ver en: http://hdl.handle.net/10261/330626
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330626

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330629
Dataset. 2022

SUPPLEMENTARY MATERIALS RATIONAL DESIGN OF MXENE/ACTIVATED CARBON/POLYOXOMETALATES TRIPLE HYBRID ELECTRODES WITH ENHANCED CAPACITANCE FOR ORGANIC-ELECTROLYTE SUPERCAPACITORS

  • Zhu, Jun-Jie
  • Hemesh, Avireddy
  • Jacas Biendicho, Jordi
  • Martínez-Soria, Luis
  • Rueda-García, Daniel
  • Morante, Joan Ramón
  • Ballesteros, Belén
  • Gómez-Romero, P.
17 pages. -- File includes supplementary data: Synthesis of MXene/AC; In-situ growth MXene/TEAPW12 Delamination of MXene with TEAOH; Synthesis of MXene/TEAPW12; Preparation of activated carbon electrode for asymmetric capacitors; Charge balance of the asymmetric capacitors. -- Figures and tables., ICN2 and IREC are funded by the CERCA programme / Generalitat de Catalunya, and ICN2 is also supported by the Severo Ochoa Centres of Excellence programme, funded by the Spanish Research Agency (AEI, grant no. SEV-2017-0706)., Peer reviewed

DOI: http://hdl.handle.net/10261/330629
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330629
HANDLE: http://hdl.handle.net/10261/330629
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330629
PMID: http://hdl.handle.net/10261/330629
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330629
Ver en: http://hdl.handle.net/10261/330629
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330629

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330630
Dataset. 2022

SUPPLEMENTARY MATERIALS FOR IMPACT OF PROTEIN CONTENT ON THE ANTIOXIDANTS, ANTI-INFLAMMATORY PROPERTIES AND GLYCEMIC INDEX OF WHEAT AND WHEAT BRAN

  • Jiménez-Pulido, Iván J.
  • Daniel, Rico
  • Pérez-Jiménez, Jara
  • Martínez-Villaluenga, Cristina
  • Luis, Daniel Antonio de
  • Martín Diana, Ana Belén
Table S1. m/z values of phenolic compounds obtained in wheat samples by HPLC-ESI-QTOF-MS., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330630
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330630
HANDLE: http://hdl.handle.net/10261/330630
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330630
PMID: http://hdl.handle.net/10261/330630
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330630
Ver en: http://hdl.handle.net/10261/330630
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330630

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330631
Dataset. 2022

SUPPLEMENTARY MATERIALS FOR IMPROVING NUTRITIONAL AND HEALTH BENEFITS OF BISCUITS BY OPTIMIZING FORMULATIONS BASED ON SPROUTED PSEUDOCEREAL GRAINS

  • Paucar-Menacho, Luz María
  • Simpalo Lopez, Wilson Daniel
  • Castillo-Martínez, Williams Esteward
  • Esquivel-Paredes, Lourdes
  • Martínez-Villaluenga, Cristina
Figure S1: Starch hydrolysis kinetic of control biscuit (100% WF), BQC (15% SQF, 25% SCF, and 60% WF) and white wheat bread, Table S1: Sprouting parameters of cañihua, kiwicha, and quinoa grains, Table S2: Experimental design with three independent variables (proportion of a combination of three flour types)., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330631
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330631
HANDLE: http://hdl.handle.net/10261/330631
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330631
PMID: http://hdl.handle.net/10261/330631
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330631
Ver en: http://hdl.handle.net/10261/330631
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330631

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330632
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. FUNCT. MATER., DOI: 10.1002/ADFM.202111446 SITE-SPECIFIC AXIAL OXYGEN COORDINATED FEN4 ACTIVE SITES FOR HIGHLY SELECTIVE ELECTROREDUCTION OF CARBON DIOXIDE

  • Zhang, Ting
  • Han, Xu
  • Biset-Peiró, Martí
  • Li, Jian
  • Zhang, Xuan
  • Tang, Peng-Yi
  • Yang, Bo
  • Zheng, Lirong
  • Morante, Javier
  • Arbiol, Jordi
26 pages. -- PDF file includes: Materials and methods; XAFS Measurements; XAFS Analysis and Results; Synthesis Methods: Preparation of IRMOF-3; Preparation of ZIF-8; Preparation of Fe-IRMOF-3 and Fe-ZIF-8; Preparation of Disperse Fe-N-C (denoted as O-Fe-N-C and Fe-N-C); Preparation of O-Fe-N-C-Acid; Ink Preparation; Electrochemical Measurement; Calculation Method; DFT Calculations. -- Figures and tables., ICN2 acknowledges funding from Generalitat de Catalunya 2017 SGR 327.ICN2 was supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706)., Peer reviewed

DOI: http://hdl.handle.net/10261/330632
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330632
HANDLE: http://hdl.handle.net/10261/330632
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330632
PMID: http://hdl.handle.net/10261/330632
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330632
Ver en: http://hdl.handle.net/10261/330632
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330632

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330634
Dataset. 2022

SUPPLEMENTARY MATERIALS FOR REFORMULATING BREAD USING SPROUTED PSEUDO-CEREAL GRAINS TO ENHANCE ITS NUTRITIONAL VALUE AND SENSORIAL ATTRIBUTES

  • Paucar-Menacho, Luz María
  • Simpalo Lopez, Wilson Daniel
  • Castillo-Martínez, Williams Esteward
  • Esquivel-Paredes, Lourdes
  • Martínez-Villaluenga, Cristina
Figure S1: Starch hydrolysis kinetic of BrWF (100% WF) and BrKC (5% SKF, 23% SCF, 72% WF). Table S1: Sprouting parameters of cañihua and kiwicha grains. Table S2: Experimental design with three independent variables (proportion of flour blends)., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330634
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330634
HANDLE: http://hdl.handle.net/10261/330634
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330634
PMID: http://hdl.handle.net/10261/330634
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330634
Ver en: http://hdl.handle.net/10261/330634
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330634

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330635
Dataset. 2022

SUPPLEMENTARY MATERIALS FOR THE INFLUENCE OF CELLULOSE ETHERS ON THE PHYSICO-CHEMICAL PROPERTIES, STRUCTURE AND LIPID DIGESTIBILITY OF ANIMAL FAT EMULSIONS STABILIZED BY SOY PROTEIN

  • Cofrades, Susana
  • Saiz, Arancha
  • Pérez-Mateos, Miriam
  • Garcimartín, Alba
  • Redondo-Castillejo, Rocío
  • Bocanegra, Aranzazu
  • Benedí, Juana
  • Álvarez, M. Dolores
Figure S1: Complex modulus (G*) as a function of the applied shear stress for the emulsions: (a) at 5 °C; (b) at 37 °C; Figure S2: Flow properties as a function of the shear rate between 0.1 and 100 s−1 for the emulsions at 37 °C: (a) Apparent viscosity (ηa) used in power law model fits; (b) shear stress (σ) used in Casson model fits; Figure S3: Apparent viscosity (ηa) as a function of the time derived from three-step shear rate tests for the emulsions at 37 °C., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330635
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330635
HANDLE: http://hdl.handle.net/10261/330635
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330635
PMID: http://hdl.handle.net/10261/330635
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330635
Ver en: http://hdl.handle.net/10261/330635
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330635

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330636
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. SCI., DOI: 10.1002/ADVS.202104643 ULTRA-LARGE FREE-STANDING IMINE-BASED COVALENT ORGANIC FRAMEWORK MEMBRANES FABRICATED VIA COMPRESSION

  • Martín-Illán, Jesús Á.
  • Suárez, José Antonio
  • Gómez-Herrero, Julio
  • Ares, Pablo
  • Gallego-Fuente, Daniel
  • Cheng, Youdong
  • Zhao, Dan
  • Maspoch, Daniel
  • Zamora, Félix
26 pages. -- Figure S1. PXRD patterns of TAPB-BTCA-MCOFs at different pressures in perpendicular mode. -- Figure S2. Photographs highlighting the flexible COF-membrane. --Table S1. Experimental elemental analysis data of COF aerogels (AG) and COFmembranes (M). -- Table S2. Physical features of the COF aerogels and membranes. -- Figure S3. ATR-FT-IR spectra of TAPB-BTCA-AGCOF (blue-line) and TAPB-BTCAMCOF (green-line). -- Figure S4. ATR-FT-IR spectra of PPDA-BTCA-AGCOF (blue-line) and PPDA-BTCAMCOF (green-line). -- Figure S5. ATR-FT-IR spectra of TAPB-PDA-AGCOF (blue-line) and TAPB-PDAMCOF (green-line). -- Figure S6. Solid state 13C NMR spectrum of TAPB-BTCA-MCOF. -- Table S3. Peaks assignment of solid state 13C NMR spectrum of TAPB-BTCA-MCOF. -- Figure S7. Solid-state 13C CP-MAS NMR spectrum of PPDA-BTCA-MCOF. -- Table S4. Peaks assignment of solid state 13C NMR spectrum of PPDA-BTCA-MCOF. - Figure S8. Solid-state 13C CP-MAS NMR spectrum for TAPB-PDA-MCOF. -- Table S5. Peaks assignment of solid state 13C NMR spectrum of TAPB-PDA-MCOF. -- Figure S9. TGA traced for TAPB-BTCA-AGCOF (black) and TAPB-BTCA-MCOF (red). 16 % volatile elements. -- Figure S10. TGA traced for PPDA-BTCA-AGCOF (black) and PPDA-BTCA-MCOF (red). 14 % volatile elements. -- Figure S11. TGA traced for TAPB-PDA-AGCOF (black) and TAPB-PDA-MCOF (red). 9 % volatile elements. -- Figure S12. PXRD patterns of (A) TAPB-BTCA-MCOF, (B) PPDA-BTCA-MCOF and (C) TAPB-PDA-MCOF before (blue) and after treatment with toluene (red), hexane (dark-yellow), dimethylformamide (black), 14 м NaOH (dark cyan) and 12 м HCl (green). -- Figure S13. AFM Topography images of TAPB-BTCA-MCOF (A-D), PPDA-BTCAMCOF (B-E) and TAPB-PDA-MCOF (C-F) membranes. A, B and C without AcOH and D, E and F with AcOH. -- Figure S14. Histograms showing Young’s modulus distribution of the membranes with AcOH. -- Figure S15. Histograms showing Young’s modulus distribution of the membranes without AcOH. -- Figure S16. (A, B, C) Representative Young’s modulus maps of the TAPB-BTCA-MCOF, PPDA-BTCA-MCOF and TAPB-PDA-MCOF membranes respectively, and the corresponding AFM topographical images of the same areas (D, E, F). -- Figure S17. N2 adsorption–desorption isotherm of TAPB-BTCA-AGCOF (black line) and TAPB-BTCA-MCOF (red line). -- Figure S18. N2 adsorption–desorption isotherms of PPDA-BTCA-AGCOF (black line) and PPDA-BTCA-MCOF (red line). -- Figure S19. N2 adsorption–desorption isotherms of TAPB-PDA-AGCOF (black line) and TAPB-PDA-MCOF (red line). -- Table S6. BET surface area values for COF-aerogels (AG) and COF-membranes (M). -- Figure S20. Cumulative and pore size-distribution of TAPB-BTCA-MCOF. -- Figure S21. Cumulative and pore size-distribution of PPDA-BTCA-MCOF. -- Figure S22. Cumulative and pore size-distribution of TAPB-PDA-MCOF. -- Figure S23. CO2 uptake capacity isotherms of TAPB-BTCA-AGCOF (black line) and TAPB-BTCA-MCOF (red line). -- Figure S24. CO2 uptake capacity isotherms of PPDA-BTCA-AGCOF (black line) and PPDA-BTCA-MCOF (red line). -- Figure S25. CO2 uptake capacity isotherms of TAPB-PDA-AGCOF (black line) and TAPB-PDA-MCOF (red line). -- Figure S26. CH4 uptake capacity isotherms of TAPB-BTCA-AGCOF (black line) and TAPB-BTCA-MCOF (red line). -- Figure S27. CH4 uptake capacity isotherms of PPDA-BTCA-AGCOF (black line) and PPDA-BTCA-MCOF (red line). -- Figure S28. CH4 uptake capacity isotherms of TAPB-PDA-AGCOF (black line) and TAPB-PDA-MCOF (red line). -- Figure S29. Summary of CO2 adsorption capacities reported for different COFs at 273 K, the best performance MOF (Mg2(dodbc) at 298 K and zeolite ([Na10.2KCs0.8]-LTA at 1 bar. -- Figure S30. Summary of CH4 adsorption capacities for the best 2D-COF at low pressure (1 bar). -- Table S7. Summary of the uptake values for the COF-aerogels (AG) and COF-membranes (M). -- Figure S31. Study of the gas permeability and separation selectivity at different transmembrane pressures for (A) CO2/CH4 and (B) CO2/N2 in TAPB-BTCA-MCOF. -- Figure S32. Study of the gas permeability and separation selectivity under different temperatures for (A) CO2/CH4 and (B) CO2/N2 in TAPB-BTCA-MCOF. -- Figure S33. Evaluation of the long-term stability of TAPB-BTCA-MCOF for the separation of CO2/CH4 mixtures. -- Table S8. CO2/N2 upper bound of commercial membranes and membranes made of MOFs, zeolites, porous organic polymers and COFs. -- Table S9. CO2/CH4 upper bound of commercial membranes and membranes made of MOFs, zeolites, porous organic polymers and COFs. -- Table S10. Summary of the performance of COF-membranes for CO2/CH4 and CO2/N2 separation, ICN2 was supported by the Severo Ochoa program from the Spanish MINECO (Grant No. SEV-2017-0706)., Peer reviewed

DOI: http://hdl.handle.net/10261/330636
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330636
HANDLE: http://hdl.handle.net/10261/330636
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330636
PMID: http://hdl.handle.net/10261/330636
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330636
Ver en: http://hdl.handle.net/10261/330636
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330636

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330639
Dataset. 2022

SUPPLEMENTARY MATERIALS FOR EFFECT OF OLIVE POMACE OIL ON CARDIOVASCULAR HEALTH AND ASSOCIATED PATHOLOGIES

  • González-Rámila, Susana
  • Sarriá, Beatriz
  • Seguido, Miguel A.
  • García-Cordero, Joaquín
  • Bravo, Laura
  • Mateos, Raquel
Table S1: Effect of olive pomace oil (OPO) and sunflower oil (SO) consumption on blood; Table S2. Effect of olive pomace oil (OPO) and sunflower oil (SO) consumption on antioxidant capacity and lipid peroxidation., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330639
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330639
HANDLE: http://hdl.handle.net/10261/330639
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330639
PMID: http://hdl.handle.net/10261/330639
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330639
Ver en: http://hdl.handle.net/10261/330639
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330639

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330641
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. MATER., DOI: 10.1002/ADMA.202108835 A HIGH CONDUCTIVITY 1D Π–D CONJUGATED METAL–ORGANIC FRAMEWORK WITH EFFICIENT POLYSULFIDE TRAPPING-DIFFUSIONCATALYSIS IN LITHIUM–SULFUR BATTERIES

  • Yang, Dawei
  • Liang, Zhifu
  • Tang, Peng-Yi
  • Zhang, Chaoqi
  • Tang, Mingxue
  • Li, Qizhen
  • Jacas Biendicho, Jordi
  • Li, Junshan
  • Heggen, Marc
  • Dunin-Borkowski, Rafal E.
  • Xu, Ming
  • Llorca, Jordi
  • Arbiol, Jordi
  • Morante, Joan Ramón
  • Chou, Shu-Lei
  • Cabot, Andreu
22 pages. -- PDF file includes: Experimental Procedures; DFT calculations. -- Figure S1. (a,b) SEM image and EDX spectrum of Ni-MOF-1D sample. (c) High magnification STEM-HAADF image and EDX elemental mapping showing the elemental distribution in a Ni-MOF-1D sample. (d) XRD pattern of Ni-MOF-1D. -- Figure S2. High magnification HAADF-STEM images and detailed STEM-EDX elemental maps of a Ni-MOF 1D catalyst. -- Figure S3. iDPC-STEM images of Ni-MOF-1D with different magnifications. -- Figure S4. (a) XPS survey spectrum of Ni-MOF-1D. (b-d) High resolution XPS spectra of b) C 1s, c) N 1s, and d) Ni 2p. -- Table S1 Detailed EXAFS fitting model and parameters of Ni-MOF-1D. -- Figure S5. Wavelet transform (WT) analysis of (a) Ni-MOF-1D, (b) Ni foil, and (c) NiO. -- Figure S6. 1H NMR spectra of the obtained sample of Ni-MOF-1D. -- Figure S7. (a) Projected integral of the charge density in the non-periodic direction. (b) Projected integral of the charge density in the periodic direction of Ni-MOF-1D. -- Figure S8. Calculated electron localization function (ELF) of Ni-MOF-1D. -- Figure S9. (a) SEM-EDX compositional maps and (b) EDX spectra of S@Ni-MOF-1D. (c) XRD pattern of S@Ni-MOF-1D. (d) TGA profile from S@Ni-MOF-1D measured in N2 atmosphere. (e) N2 adsorption-desorption isotherms of Ni-MOF-1D and S@Ni-MOF-1D. Inset: Pore size distribution of Ni-MOF-1D and S@Ni-MOF-1D. -- Figure S10. Electrical conductivity of the two hosts tested before and after fusion with sulfur. -- Figure S11. Binding energies and adsorbed structures of LiPS on the surface of carbon calculated by DFT. -- Figure S12. Binding energies and adsorbed structures of LiPS on the surface of Ni-MOF-1D calculated by DFT. -- Figure S13. The optimized adsorption configuration of Li2S decomposition on carbon. -- Figure S14. The optimized adsorption configuration of Li2S decomposition on Ni-MOF-1D. -- Figure S15. (a) CV curve of Ni-MOF-1D as electrode measured in symmetric coin cell configuration using an electrolyte containing 1 mol L−1 LiTFSI dissolved in DOL/DME (v/v =1/1). (b) CV curves of symmetric cells from 1 to 50 cycles. (c) CV profiles of Ni-MOF-1D electrodes in symmetric cells at scan rate from 2 mV s-1 to 20 mV s-1. -- Figure S16. EIS spectra of symmetrical cells with different host materials, Ni-MOF-1D (a) and Super P (b), using an electrolyte containing 0.5 mol L-1 Li2S 6 and 1 mol L-1 LiTFSI dissolved in DOL/DME (v/v = 1/1). -- Figure S17. Onset potential for Li–S redox reactions. -- Figure S18. CV curves of S@Super P at different scan rates. -- Figure S19. First four cycles of CV curves of (a) S@Ni-MOF-1D, and (b) S@Super P performed at a scan rate of 0.1 mV s−1. -- Figure S20. Plots of CV peak current. -- Figure S21. Charge profiles of S@Ni-MOF-1D, and S@Super P electrodes showing the overpotentials for conversion between soluble LiPS and insoluble Li2S2/Li2S. --Figure S22. (a) Galvanostatic charge/discharge profiles of S@Super P electrodes at different current densities range from 0.1 C to 3 C. (b) EIS spectra of S@Super P coin cells before and after cycling. -- Figure S23. High-loading cycling performances with sulfur loadings of 7.6 mg cm-2 at 0.5 C of S@Ni-MOF-1D electrodes. -- Figure S24. (a) Galvanostatic charge/discharge profiles of S@Ni-MOF-1D at various current rates with a high sulfur loading of 4.3 mg cm−2. (b) Rate capability of S@Ni-MOF-1D cathodes loaded with 4.3 mg cm−2 of sulfur at various C rates. -- Figure S25. (a) TGA curve of a S@Ni-MOF-1D composite with a higher sulfur loading. (b) Cycling stability and Coulombic efficiency of the S@Ni-MOF-1D cathode with a higher sulfur loading at 1 C for 250 cycles. -- Table S2 Summary of recent reports on MOF-based sulfur host cathodes for LSBs., ICN2 acknowledges the support from the Severo Ochoa Programme (MINECO, Grant no. SEV-2017-0706). IREC and ICN2 are both funded by the CERCA Programme/Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/330641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330641
HANDLE: http://hdl.handle.net/10261/330641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330641
PMID: http://hdl.handle.net/10261/330641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330641
Ver en: http://hdl.handle.net/10261/330641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330641

Buscador avanzado