Resultados totales (Incluyendo duplicados): 45302
Encontrada(s) 4531 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329688
Dataset. 2023

NUTRICIÓN SOSTENIBLE Y SALUDABLE

INFORME DE TRANSFERENCIA DE CONOCIMIENTO

  • Presidencia del CSIC
Ciencia para las Políticas Públicas - Science 4 Policy.-- Coordinado por: Isabel Medina, M. Dolores del Castillo, Óscar Martínez Álvarez, Amparo Querol, M. Victoria Moreno-Arribas., Los informes Ciencia para las Políticas Públicas (Science For Policy) forman parte de un proyecto estratégico impulsado desde la presidencia del organismo para contribuir a la definición de políticas basadas en la evidencia científica. Elaborados por equipos de investigadores del CSIC, estos documentos abordan los principales retos científicos y sociales como la resistencia de las bacterias a los antibióticos, los incendios, las sequías, la generación de energía, la producción alimentaria y el tratamiento de plásticos. Su objetivo es servir de puente entre los centros de investigación y los decisores políticos para contribuir a la definición de políticas públicas basadas en la evidencia científica., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329688
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329688
HANDLE: http://hdl.handle.net/10261/329688
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329688
PMID: http://hdl.handle.net/10261/329688
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329688
Ver en: http://hdl.handle.net/10261/329688
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329688

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
Dataset. 2022

SUPPORTING INFORMATION 2D/2D HETEROJUNCTION OF TIO2 NANOSHEETS / ULTRATHIN G-C3N4 FOR EFFICIENT PHOTOCATALYTIC HYDROGEN EVOLUTION

  • Du, Ruifeng
  • Li, Baoying
  • Han, Xu
  • Xiao, Ke
  • Wang, Xiang
  • Zhang, Chaoqi
  • Arbiol, Jordi
  • Cabot, Andreu
10 pages. -- Figures and tables. -- Figure S1: SEM image of (a) bulk g-C3N4 and (b) ultrathin g-C3N4, (c) N2 adsorption-desorption isotherms of bCN and uCN. -- Figure S2: FTIR spectra of OAC, OLMA and TiO2 before and after ligands remove. -- Figure S3: Zeta potential distribution spectrum of TiO2 after ligands removal (a) and uCN (b). -- Figure S4: SEM image and EDS compositional maps of a T1/uCN1 composite. -- Figure S5: SEM image of T1/uCN2 and corresponding EDS spectrum. -- Figure S6: SEM image of T1/uCN2 and corresponding EDS spectrum. -- Figure S7: SEM image of T1/uCN2 and corresponding EDS spectrum; Figure S8: Chromatogram plots for 0.5 ml of standard hydrogen injected every half hour. -- Table S1: Gas Chromatography Peak Processing Data based on figure S8. -- Figure S9: Standard hydrogen curve for gas chromatography. -- Table S2: Exponential decay-fitted parameters of fluorescence lifetime of uCN, TiO2 and T1/uCN1. -- Figure S10: Photocatalytic hydrogen generation amount on bCN, TiO2 and T1/bCN1 during 4 h under simulated solar light irradiation; Table S3: Photocatalytic hydrogen production about TiO2/g-C3N4 based catalysts. -- Table S4: The AQE values with different incident light wavelengths for T1/uCN1. -- Figure S11: (a) Stability cycles of the T1/uCN1 for H2 evolution under simulated solar light irradiation; (b) TEM image of T1/uCN1 after 20 h photocatalytic H2 evolution reaction and (c) XRD pattern of T1/uCN1 before and after 20 h photocatalytic H2O2 evolution reaction., CN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCAProgramme / Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
HANDLE: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
PMID: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
Ver en: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329691
Dataset. 2022

S4 FIG - EVALUATION OF SARS-COV-2 ENTRY, INFLAMMATION AND NEW THERAPEUTICS IN HUMAN LUNG TISSUE CELLS

  • Grau-Expósito, Judith
  • Perea, David
  • Suppi, Marina
  • Massana, Nuria
  • Vergara, Ander
  • Soler, María José
  • Trinité, Benjamin
  • Blanco, Julià
  • García-Pérez, Javier
  • Alcamí, José
  • Serrano-Mollar, Anna
  • Rosado, Joel
  • Falcó, Vicenç
  • Genesca, Meritxell
  • Buzón, María José
A) Percentage of enriched AT-II cells co-expressing the entry factors ACE2 and CD147 (in blue), and ACE2 and TMPRSS2 (in purple). (B) t-distributed Stochastic Neighbor Embedding (tSNE) representation for AXL expression in CD45+ and CD45-EpCAM+ fractions from a representative lung tissue. Right graphs show the percentage of expression of the AXL entry factor in the different cell populations, which were identified as in Fig 1A. (C) Bar plots showing the percentage of viral entry inhibition on HLT cells in the presence of anti-ACE2 antibody (15μg/ml) or recombinant human AXL (50μg/ml) after cell challenge with VSV*ΔG(Luc)-Spike. Data were analyzed by one sample t-test; *p<0.05, **p<0.01. (D) Frequency of each subset relative to live cells at 0h and 24h with and without the presence of virus. All cell subsets were identified as shown in S2A Fig. (E) EC50 values in the HLT model obtained from 3 different lung donors and performed in replicates. (F) Cells from 1 donor were cultured with 20 μM of selected drugs for 48h, and cell toxicity was measured using the CellTiter-Glo Luminescent kit (Promega), following the manufacturer’s instructions. Data was normalized to the untreated control. Mean±SEM is shown for all graphs, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329691
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329691
HANDLE: http://hdl.handle.net/10261/329691
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329691
PMID: http://hdl.handle.net/10261/329691
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329691
Ver en: http://hdl.handle.net/10261/329691
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329691

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329692
Dataset. 2022

SUPPLEMENTARY FILES OF THE ARTICLE KSR INDUCES RAS-INDEPENDENT MAPK PATHWAY ACTIVATION AND MODULATES THE EFFICACY OF KRAS INHIBITORS [DATASET]

  • Paniagua, Guillem
  • Jacob, Harrys K.C.
  • Brehey, Oksana
  • García-Alonso, Sara
  • Lechuga, Carmen G.
  • Pons, Tirso
  • Musteanu, Mónica
  • Guerra, Carmen
  • Drosten, Matthias
  • Barbacid, Mariano
Fig. S1. KSR1ΔCA1 localizes to the plasma membrane and binds BRAF. Fig. S2. 3D model of the mKSR1 kinase domain. Fig. S3. Purification of recombinant KSR1 protein. Fig. S4. RAS-independent proliferation in the absence of p53 does not involve KSR. Fig. S5. Western blot analysis of KSR1 expression levels in parental and resistant MIA PaCa-2 (A) as well as PDX-dc1 (B) cell lines. Fig. S6. Model of KSR-driven proliferation in RASless cells., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329692
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329692
HANDLE: http://hdl.handle.net/10261/329692
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329692
PMID: http://hdl.handle.net/10261/329692
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329692
Ver en: http://hdl.handle.net/10261/329692
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329692

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329695
Dataset. 2022

SUPPORTING INFORMATION FOR FIGURES. INEQUALITIES IN COVID-19 INEQUALITIES RESEARCH: WHO HAD THE CAPACITY TO RESPOND?

  • Benach, Joan
  • Cash-Gibson, Lucinda
  • Rojas-Gualdrón, Diego F.
  • Padilla-Pozo, Álvaro
  • Fernández-Gracia, Juan
  • Eguíluz, Víctor M.
Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329695
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329695
HANDLE: http://hdl.handle.net/10261/329695
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329695
PMID: http://hdl.handle.net/10261/329695
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329695
Ver en: http://hdl.handle.net/10261/329695
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329695

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329696
Dataset. 2022

META-ANALYSIS OF CILTACABTAGENE AUTOLEUCEL VERSUS PHYSICIAN’S CHOICE THERAPY FOR THE TREATMENT OF PATIENTS WITH RELAPSED OR REFRACTORY MULTIPLE MYELOMA [DATASET]

  • Costa, Luciano J.
  • Hari, Parameswaran
  • Berdeja, Jesús G.
  • Stefano, Valerio De
  • Gay, Francesca
  • Hooper, Becky
  • Bartlett, Meaghan
  • Haltner, Anja
  • Rosta, Emily
  • Kumar, Shaji
  • Martin, Thomas
  • Mateos, Maria Victoria
  • Moreau, Philippe
  • Usmani, Saad Z.
  • Olyslager, Yunsi
  • Schecter, Jordan M.
  • Roccia, Tito
  • Garrett, Ashraf
  • Lee, Sam
  • Nesheiwat, Tonia
  • Pacaud, Lida
  • Zhou, Changwei
  • Samjoo, Imtiaz A.
  • Lin, Yi
  • Dielsl, Joris
  • Valluri, Satish
  • Weisel, Katja C.
Figure A.1: Selection of Comparator Arms for ITC Analyses Figure A.2: Results of sensitivity analyses with OIs removed for OS at all (A) and first (B) index dates Figure A.3: Results of sensitivity analyses with LocoMMotion removed for OS at all (A) and first (B) index dates, and PF at first index dates (C) Table A.1: Characteristics of Data Sources for PCT arms in ITCs Table A.2: Published ITC Results and Augmented Results Included in Meta-analyses (All Index Dates) Table A.3: Published ITC Results and Augmented Results Included in Meta-analyses (First Index Dates) Table A.4: Baseline Covariates After Adjustment (mITT Populations; All Index Dates) Table A.5: Baseline Covariates After Adjustment (mITT Populations; First Index Dates) Table A.6: Outcome Definitions in ITC Analyses, [Objective]: In the absence of head-to-head trials, indirect treatment comparisons (ITCs) between ciltacabtagene autoleucel (cilta-cel; in CARTITUDE-1) and treatments used in real-world clinical practice (physician’s choice of treatment [PCT]), were previously conducted. We conducted multiple meta-analyses using available ITC data to consolidate the effectiveness of cilta-cel versus PCT for patients with triple-class exposed relapsed or refractory multiple myeloma (RRMM). [Methods]: Five ITCs were assessed for similarity to ensure robust comparisons using meta-analysis. Effectiveness outcomes were overall survival (OS), progression-free survival (PFS), time to next treatment (TTNT), and overall response rate (ORR). A robust variance estimator was used to account for the use of CARTITUDE-1 in each pairwise ITC. Analyses were conducted in both treated and enrolled populations of CARTITUDE-1. [Results]: Four ITCs were combined for evaluation of OS. Results were statistically significantly in favor of cilta-cel versus PCT in treated patients (hazard ratio [HR]: 0.24, 95% confidence interval [CI]: 0.22–0.26). Three ITCs were combined for evaluation of PFS and TTNT. Cilta-cel reduced the risk of progression and receiving a subsequent treatment by 80% (HR: 0.20 [95% CI: 0.06, 0.70]) and 83% (HR: 0.17 [95% CI: 0.12, 0.26]), respectively. Three ITCs were combined for evaluation of ORR. Cilta-cel increased the odds of achieving an overall response by 86-times versus PCT in treated patients. Findings were consistent in the enrolled populations and across sensitivity analyses. [Conclusions]: Evaluating multiple indirect comparisons, cilta-cel demonstrated a significantly superior advantage over PCT, highlighting its effectiveness as a therapy in patients with triple-class exposed RRMM., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329696
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329696
HANDLE: http://hdl.handle.net/10261/329696
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329696
PMID: http://hdl.handle.net/10261/329696
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329696
Ver en: http://hdl.handle.net/10261/329696
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329696

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329699
Dataset. 2022

SUPPLEMENTARY FILES OF THE ARTICLE MUTATIONAL SCREENING OF THE TPO AND DUOX2 GENES IN ARGENTINIAN CHILDREN WITH CONGENITAL HYPOTHYROIDISM DUE TO THYROID DYSHORMONOGENESIS [DATASET]

  • Molina, Maricel F.
  • Papendieck, Patricia
  • Sobrero, Gabriela
  • Balbi, Viviana A.
  • Belforte, Fiorella S.
  • Bueno, Elena
  • Adrover, Ezequiela
  • Olcese, María C.
  • Chiesa, Ana
  • Miras, Mirta B.
  • González, Verónica G.
  • Gomes Pio, Mauricio
  • González-Sarmiento, Rogelio
  • Targovnik, Héctor M.
  • Rivolta, Carina M.
Supplementary Notes 1: Case Reports. Supplementary Notes 2: 3D modeling analysis of the identified Thyroid Peroxidase (TPO), Dual Oxidase 2 (DUOX2) and Iodothyrosine Deiodinase I IYD variants. Supplementary Table 1. Human thyroid peroxidase, dual oxidase 2 and iodothyrosine deiodinase missense variants identified and their analysis with amino acid substitution prediction tools. Supplementary Table 2. Identification of human Thyroid Peroxidase (TPO) variants by Next-Generation Sequencing (NGS). Supplementary Table 3. Identification of human Dual Oxidase 2 (DUOX2) variants by Next-Generation Sequencing (NGS). Supplementary Figure 1. Differential diagnosis in patients with thyroid dyshormonogenesis. Supplementary Figure 2. Partial protein alignment of the Homo sapiens, Camelus dromedarius, Rattus norvegicus, Mus musculus, Culex quinquefasciatus, Sus scrofa, Lynx Canadensis, Xenopus tropicalis and Canis lupus familiaris thyroid peroxidase (TPO) species. Supplementary Figure 3. Partial protein alignment of the Homo sapiens, Mustela erminea, Sus scrofa, Mus musculus, Lynx canadensis, Bos taurus, Gallus gallus, Pan troglodytes dual oxidase 2 (DUOX2) species., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329699
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329699
HANDLE: http://hdl.handle.net/10261/329699
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329699
PMID: http://hdl.handle.net/10261/329699
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329699
Ver en: http://hdl.handle.net/10261/329699
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329699

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329705
Dataset. 2022

GATING STRATEGY FOR THE IDENTIFICATION OF CELL SUBPOPULATIONS IN THE HUMAN LUNG TISSUE MODEL

  • Grau-Expósito, Judith
  • Perea, David
  • Suppi, Marina
  • Massana, Nuria
  • Vergara, Ander
  • Soler, María José
  • Trinité, Benjamin
  • Blanco, Julià
  • García-Pérez, Javier
  • Alcamí, José
  • Serrano-Mollar, Anna
  • Rosado, Joel
  • Falcó, Vicenç
  • Genesca, Meritxell
  • Buzón, María José
(A) General gating strategy used to identify different cell subsets in lung samples. A gate based on FSC vs. SSC was followed by doublet and dead cells exclusion. From live CD45- cells, endothelial cells (CD31+, purple) and epithelial cells (EpCAM+, grey) were gated, and within epithelial cells, AT-II cells (EpCAM+ and HLA-DR+, pink) were identified. Out of live CD45+ cells and based on FSC vs. SSC, we identified a lymphocyte population in which we distinguished between non-T lymphocytes (turquoise) and T cells (dark green) based on CD3 expression; and big cells, where we identified three major subsets based on their expression of CD11b and CD11c and, subsequently, CD14 and HLA-DR markers. We identified alveolar macrophages (blue), monocytes (violet), myeloid dendritic cells (mDCs, fuchsia) and neutrophils (orange)., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329705
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329705
HANDLE: http://hdl.handle.net/10261/329705
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329705
PMID: http://hdl.handle.net/10261/329705
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329705
Ver en: http://hdl.handle.net/10261/329705
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329705

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329707
Dataset. 2022

OPTIMIZATION OF LUNG TISSUE ENZYMATIC DIGESTION VISUALIZED BY T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (TSNE), AND REPRESENTATIVE SPC AND ACE2 EXPRESSION

  • Grau-Expósito, Judith
  • Perea, David
  • Suppi, Marina
  • Massana, Nuria
  • Vergara, Ander
  • Soler, María José
  • Trinité, Benjamin
  • Blanco, Julià
  • García-Pérez, Javier
  • Alcamí, José
  • Serrano-Mollar, Anna
  • Rosado, Joel
  • Falcó, Vicenç
  • Genesca, Meritxell
  • Buzón, María José
(A) Representative tSNE maps showing concatenated flow cytometry standard files for three different protocols based on different digestion enzymes (collagenase, liberase or trypsin) from total live cells (upper), CD45+ cells (middle) and CD45- cells (lower). (B) Bar plots showing cell-type composition (count) analyzed by flow cytometry for each tissue protocol. (C) Representative flow cytometry plots showing Surfactant Protein C (SPC) staining and its respective fluorescence minus one (FMO) control. (D) Representative flow cytometry plots showing ACE2 staining and its respective fluorescence minus one (FMO) control., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329707
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329707
HANDLE: http://hdl.handle.net/10261/329707
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329707
PMID: http://hdl.handle.net/10261/329707
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329707
Ver en: http://hdl.handle.net/10261/329707
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329707

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329708
Dataset. 2022

DATASHEET1_NEW FUNCTIONS OF C3G IN PLATELET BIOLOGY: CONTRIBUTION TO ISCHEMIA-INDUCED ANGIOGENESIS, TUMOR METASTASIS AND TPO CLEARANCE.PDF

  • Hernández-Cano, Luis
  • Fernández-Infante, Cristina
  • Herranz, Óscar
  • Berrocal, Pablo
  • Lozano, Francisco S.
  • Sánchez-Martin, Manuel Adolfo
  • Porras, Almudena
  • Guerrero Arroyo, María del Carmen
Table S1. Genetically modified animals. Table S2. PCR primers. Table S3. Antibodies used for flow cytometry, confocal immunofluorescence microscopy, immunohistochemistry, immunoprecipitation and western blot. Table S4. Deletion of C3G did not modify platelet counts and its parameters. Platelet number and parameters in C3G-KO mice and their C3G-wt siblings, male and female. The counts were made using an Advia 120 Hematology Analyzer (Bayer). Values are the mean of five, 10-week, mice of each genotype. There were no significant differences between genotypes or genders. Figure S1. Platelet C3G regulates ischemia-induced angiogenesis. (A) 3LL cells were injected in C3G-KO mice and their controls and tumors removed after 15 days. Histograms represent the number of vessels per area (upper) and the vessels surface per area (lower) (mean ± SEM) in tumor sections. (B) Blood collected at the indicated days 5 after implantation of 3LL cells in tgC3G, C3G-KO mice and their controls was incubated with anti-CXCR4-PE and anti-VEGFR-APC to determine the percentage of hemangiocytes. Histograms represent the mean ± SEM of the percentage of CXCR4+ (upper) or VEGFR+ (lower) cells in peripheral blood from the indicated genotypes. (C) Histograms represent the mean ± SEM of the percentage of CXCR4/VEGFR-double positive cells in blood from tgC3G mice and their controls (left) and the percentage of VEGFR-positive cells in blood from C3G-KO mice and their controls (right), collected at the indicated times post-ischemia. (D) Histogram represents the quantification of SDF-1 levels in thrombin-induced secretome from tgC3G, C3G-KO platelets and their controls, using a Mouse Angiogenesis Array Kit (n=2, each per duplicated). Representative images of the arrays are depicted in the left panels. SDF-1 spots are marked with red boxes. a. u, arbitrary units. Reference spots, which are not suitable for quantification, are indicated. (E) Western blot analysis of TSP-1 and VEGF levels in cytosolic (left) or membrane (right) fractions from resting, thrombin (TH)- or ADP- stimulated C3G-KO or C3G-wt platelets. β-actin was used as loading control. Values were normalized to those of resting C3G-wt platelets. Figure S2. C3G ablation or overexpression does not modify physiological MK or platelet production, nor does MK production after TPO injection or 5-FU-induced BM depletion. (A) Box plots showing the median of the number of platelets in C3G-KO mice and their control siblings. (B) Expression of CD41 and CD61 markers in BM cells from the indicated genotypes was determined by flow cytometry using CD41-FITC and CD61-PE. Histograms represent the mean ± SD of the percentage of CD41+, CD61+ or double-positive cells (megakaryocytes). (C) Expression of CD42 (left), CD41 and CD61 markers (middle) and ploidy status (right) was analyzed by flow cytometry in BM from C3G-KO and control mice, 14 days after injection of TPO. (D, E) Expression of CD42 (left), CD41 and CD61 markers (middle) and ploidy status (right) was analyzed by flow cytometry in BM from C3G-KO and C3G-wt mice (D) or tgC3G and wtC3G mice (E), 21 after 5-FU injection. Figure S3. C3G regulates c-Mpl levels and its ubiquitination and interacts with c-Cbl. (A) Western blot analysis of c-Mpl protein levels in platelets (left) or MKs (right) from the indicated genotypes. Values are relative to β-actin expression and were normalized 8 against those of each wild-type. (B) C3G-KO and C3G-wt platelets were treated with thrombin (TH, 0.5 U/ml, 1 min) or TPO (100 ng/ml, 5 min) in the presence or absence or the SFK inhibitor PP2 (10 µM) and labeled with anti-c-Mpl + Alexa FluorTM-568 (red) or anti-Ubiquitin + Alexa FluorTM-647 (green). Upper panels: representative immunofluorescence images of platelets taken at the same exposure time. Bar: 2.5 µm. Histograms represent the mean ± SD of the fluorescence intensities of c-Mpl (left) or ubiquitin (right). (C) The graph shows the Pearson’s Correlation Coefficients (mean ± SD) of c-Mpl and ubiquitin under the indicated experimental conditions. (D) tgC3G and wtC3G platelets were treated with TPO (100 ng/ml, 5 min) in the presence or absence of the SFK inhibitor PP2 (10 µM) and labeled with anti-c-Mpl + Alexa FluorTM-568 (red) or anti-Ubiquitin + Alexa FluorTM-647 (green). Left panels: representative immunofluorescence images of platelets of each genotype under each treatment condition, taken at the same exposure time. Bar: 2.5 µm. Histograms represent the mean ± SD of the fluorescence intensities of c-Mpl (left) or ubiquitin (right). (E) The graph shows the Pearson’s Correlation Coefficients (mean ± SD) of c-Mpl and ubiquitin under the indicated experimental conditions. (F) TPO induces C3G and c-Cbl colocalization. Representative immunofluorescence images of tgC3G platelets treated with TH (0.5 U/ml, 1 min), ADP (25 µM, 5 min) or TPO (100 ng/ml, 5 min) and labeled with anti-c-Cbl + Alexa FluorTM-568 (red) and anti-C3G + Alexa FluorTM-647 (green). Histograms show the Pearson’s Correlation Coefficients (mean ± SD) of C3G and c-Cbl under the indicated experimental conditions. Figure S4. C3G promotes c-Cbl phosphorylation by Src. (A) Representative immunofluorescence images of tgC3G, C3G-KO and control platelets treated with thrombin (TH, 0.5 U/ml, 1 min) or TPO (100 ng/ml, 5 min) and labeled with antiphospho-c-Cbl + Alexa FluorTM-647 (red) and Phalloidin (green). All images were taken at the same exposure time. Bar: 2.5 µm. Histograms represent the mean ± SD of the fluorescence intensities of phospho-c-Cbl (p-c-Cbl). (B) Representative immunofluorescence images of C3G-KO platelets and their controls treated with TH (0.5 U/ml, 1 min) or TPO (100 ng/ml, 5 min), in the presence or absence of PP2, and labeled with anti-phospho-c-Cbl + Alexa FluorTM-647 (green) and anti-phospho-Src + Alexa FluorTM-568 (red). All images were taken at the same exposure time. Bar: 2.5 µm. Histograms represent the mean ± SD of the fluorescence intensities of phospho-Src (pSrc) (upper) and phospho-c-Cbl (lower) under the indicated treatments. (C) Graph showing the Pearson’s Correlation Coefficients (mean ± SD) of phospho-c-Cbl and phospho-Src under the indicated experimental conditions. (D) Representative immunofluorescence images of tgC3G platelets and their controls treated with TPO (100 ng/ml, 5 min), in the presence or absence of PP2, and labeled with anti-phospho-c-Cbl + Alexa Fluor TM-647 (green) and anti-phospho-Src + Alexa FluorTM-568 (red). All images were taken at the same exposure time. Bar: 2.5 µm. Histograms represent the mean ± SEM of the fluorescence intensities of phospho-Src (p-Src) (left) and phospho-c-Cbl (right) under the indicated treatments., C3G is a Rap1 guanine nucleotide exchange factor that controls platelet activation, aggregation, and the release of α-granule content. Transgenic expression of C3G in platelets produces a net proangiogenic secretome through the retention of thrombospondin-1. In a physiological context, C3G also promotes megakaryocyte maturation and proplatelet formation, but without affecting mature platelet production. The aim of this work is to investigate whether C3G is involved in pathological megakaryopoiesis, as well as its specific role in platelet mediated angiogenesis and tumor metastasis. Using megakaryocyte-specific C3G knockout and transgenic mouse models, we found that both C3G overexpression and deletion promoted platelet-mediated angiogenesis, induced by tumor cell implantation or hindlimb ischemia, through differential release of proangiogenic and antiangiogenic factors. However, only C3G deletion resulted in a higher recruitment of hemangiocytes from the bone marrow. In addition, C3G null expression enhanced thrombopoietin (TPO)-induced platelet production, associated with reduced TPO plasma levels. Moreover, after 5-fluorouracil-induced platelet depletion and rebound, C3G knockout mice showed a defective return to homeostatic platelet levels, indicating impaired platelet turnover. Mechanistically, C3G promotes c-Mpl ubiquitination by inducing Src-mediated c-Cbl phosphorylation and participates in c-Mpl degradation via the proteasome and lysosome systems, affecting TPO internalization. We also unveiled a positive role of platelet C3G in tumor cell-induced platelet aggregation, which facilitated metastatic cell homing and adhesion. Overall, these findings revealed that C3G plays a crucial role in platelet-mediated angiogenesis and metastasis, as well as in platelet level modulation in response to pathogenic stimuli., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329708
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329708
HANDLE: http://hdl.handle.net/10261/329708
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329708
PMID: http://hdl.handle.net/10261/329708
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329708
Ver en: http://hdl.handle.net/10261/329708
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329708

Buscador avanzado