Resultados totales (Incluyendo duplicados): 34740
Encontrada(s) 3474 página(s)
Encontrada(s) 3474 página(s)
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/66212
Dataset. 2022
CODE AND DATA OF THE ARTICLE TARGET INDUCTIVE METHODS FOR ZERO-SHOT REGRESSION
- Fernández Díaz, Miriam
- Quevedo Pérez, José Ramón|||0000-0001-7211-4312
- Montañés Roces, Elena|||0000-0003-0609-8945
Code and data of the article: Target inductive methods for zero-shot regression
https://doi.org/10.1016/j.ins.2022.03.075
Proyecto: //
DOI: http://hdl.handle.net/10651/66212, https://dx.doi.org/10.17811/ruo_datasets.66212
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/66212
HANDLE: http://hdl.handle.net/10651/66212, https://dx.doi.org/10.17811/ruo_datasets.66212
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/66212
PMID: http://hdl.handle.net/10651/66212, https://dx.doi.org/10.17811/ruo_datasets.66212
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/66212
Ver en: http://hdl.handle.net/10651/66212, https://dx.doi.org/10.17811/ruo_datasets.66212
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/66212
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/70832
Dataset. 2019
DATA FROM "HETEROGENEOUS TREE STRUCTURE CLASSIFICATION TO LABEL JAVA PROGRAMMERS ACCORDING TO THEIR EXPERTISE LEVEL"
- Ortín Soler, Francisco|||0000-0003-1199-8649
- Rodríguez Prieto, Óscar
- Pascual, Nicolás
- García Rodríguez, Miguel|||0000-0002-3150-2826
Data from the article "F. Ortin, O. Rodriguez-Prieto, N. Pascual, M. Garcia. Heterogeneous tree structure classification to label Java programmers according to their expertise level. Future Generation Computer Systems (105), pp. 380-394, 2020. https://doi.org/10.1016/j.future.2019.12.016", Open-source code repositories are a valuable asset to creating different kinds of tools and services, utilizing machine learning and probabilistic reasoning. Syntactic models process Abstract Syntax Trees (AST) of source code to build systems capable of predicting different software properties. The main difficulty of building such models comes from the heterogeneous and compound structures of ASTs, and that traditional machine learning algorithms require instances to be represented as n-dimensional vectors rather than trees. In this article, we propose a new approach to classify ASTs using traditional supervised-learning algorithms, where a feature learning process selects the most representative syntax patterns for the child subtrees of different syntax constructs. Those syntax patterns are used to enrich the context information of each AST, allowing the classification of compound heterogeneous tree structures. The proposed approach is applied to the problem of labeling the expertise level of Java programmers. The system is able to label expert and novice programs with an average accuracy of 99.6%. Moreover, other code fragments such as types, fields, methods, statements and expressions could also be classified, with average accuracies of 99.5%, 91.4%, 95.2%, 88.3% and 78.1%, respectively., This work has been partially funded by the Spanish Department of Science, Innovation and Universities: project RTI2018-099235-B-I00. The authors have also received funds from the University of Oviedo through its support of official research groups (GR-2011-0040).
Proyecto: //
DOI: https://hdl.handle.net/10651/70832, https://dx.doi.org/10.17811/ruo_datasets.70832
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/70832
HANDLE: https://hdl.handle.net/10651/70832, https://dx.doi.org/10.17811/ruo_datasets.70832
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/70832
PMID: https://hdl.handle.net/10651/70832, https://dx.doi.org/10.17811/ruo_datasets.70832
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/70832
Ver en: https://hdl.handle.net/10651/70832, https://dx.doi.org/10.17811/ruo_datasets.70832
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/70832
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/79021
Dataset. 2024
DATA DOCUMENTATION FOR: UNPRECEDENTED FORMAL INSERTION OF A METAL CARBENE COMPLEX INTO A Σ-CARBON-CARBON BOND. GOLD-CATALYZED SYNTHESIS OF 3H-INDOLES
- Allegue González, Dario|||0000-0001-8681-861X
- Sampedro, Diego
- Ballesteros Gimeno, Alfredo|||0000-0003-2093-4444
- Santamaría Victorero, Javier|||0000-0001-6369-4183
Proyecto: //
DOI: https://hdl.handle.net/10651/79021, https://dx.doi.org/10.17811/ruo_datasets.79021
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/79021
HANDLE: https://hdl.handle.net/10651/79021, https://dx.doi.org/10.17811/ruo_datasets.79021
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/79021
PMID: https://hdl.handle.net/10651/79021, https://dx.doi.org/10.17811/ruo_datasets.79021
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/79021
Ver en: https://hdl.handle.net/10651/79021, https://dx.doi.org/10.17811/ruo_datasets.79021
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/79021
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/70831
Dataset. 2018
DATA FROM "RULE-BASED PROGRAM SPECIALIZATION TO OPTIMIZE GRADUALLY TYPED CODE"
- Ortín Soler, Francisco|||0000-0003-1199-8649
- García Rodríguez, Miguel|||0000-0002-3150-2826
- McSweeney, Seán
Data from the article "F. Ortin, M. Garcia, S. McSweeney. Rule-based program specialization to optimize gradually typed code. Knowledge-Based Systems (179), pp. 145-173, 2019. https://doi.org/10.1016/j.knosys.2019.05.013", Both static and dynamic typing provide different benefits to the programmer. Statically typed languages support earlier type error detection and more opportunities for compiler optimizations. Dynamically typed languages facilitate the development of runtime adaptable applications and rapid prototyping. Since both approaches provide benefits, gradually typed languages support both typing approaches in the very same programming language. Gradual typing has been an active research field in the last years, turning out to be a strong influence on commercial languages. However, one important drawback of gradual typing is the runtime performance cost of the additional type checks performed at runtime.
In this article, we propose a rule-based program specialization mechanism to provide significant performance optimizations of gradually typed code. Our system gathers dynamic type information of the application by simulating its execution. That type information is used to optimize the generated code, reducing the number of type checks performed at runtime. Moreover, program specialization allows the early detection of compile-time type errors, providing static type safety. To ensure the correctness of the proposed approach, we prove its soundness and efficiency properties. The specialization system has been implemented as part of a full-fledged programming language, measuring the runtime performance gain. The generated code performs significantly better than the state-of-theart techniques to optimize dynamically typed code. Unlike the existing approaches, our system does not consume additional memory resources at runtime, because program specialization is performed statically. Program specialization involves an average compilation time increase from 2% to 11.75%., This work has been partially funded by the Spanish Department of Science, Innovation and Universities: project RTI2018-099235-B-I00. The authors have also received funds from the Banco Santander, Spain through its support of the Campus of International Excellence
Proyecto: //
DOI: https://hdl.handle.net/10651/70831, https://dx.doi.org/10.17811/ruo_datasets.70831
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/70831
HANDLE: https://hdl.handle.net/10651/70831, https://dx.doi.org/10.17811/ruo_datasets.70831
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/70831
PMID: https://hdl.handle.net/10651/70831, https://dx.doi.org/10.17811/ruo_datasets.70831
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/70831
Ver en: https://hdl.handle.net/10651/70831, https://dx.doi.org/10.17811/ruo_datasets.70831
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/70831
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/80003
Dataset. 2023
DATA FROM "OPTIMAL POSITION OF AIR PURIFIERS IN ELEVATOR CABINS FOR THE IMPROVEMENT OF THEIR VENTILATION EFFECTIVENESS"
- Santamaría Bertolín, Luis
- Fernández Oro, Jesús Manuel
- Argüelles Díaz, Katia
- Galdo Vega, Mónica
- Velarde Suárez, Sandra
Proyecto: //
DOI: https://hdl.handle.net/10651/80003, https://dx.doi.org/10.17811/ruo_datasets.80003
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/80003
HANDLE: https://hdl.handle.net/10651/80003, https://dx.doi.org/10.17811/ruo_datasets.80003
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/80003
PMID: https://hdl.handle.net/10651/80003, https://dx.doi.org/10.17811/ruo_datasets.80003
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/80003
Ver en: https://hdl.handle.net/10651/80003, https://dx.doi.org/10.17811/ruo_datasets.80003
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/80003
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/74584
Dataset. 2024
ALTITUDINAL VARIATION IN REPRODUCTIVE INVESTMENT AMONG GRYLLUS CAMPESTRIS POPULATIONS
- Martínez Viejo, David
- Rodríguez-Muñoz, Rolando
- Fernández-Ojanguren García-Comas, Alfredo|||0000-0001-6273-1122
Proyecto: //
DOI: https://hdl.handle.net/10651/74584, https://dx.doi.org/10.17811/ruo_datasets.74584
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/74584
HANDLE: https://hdl.handle.net/10651/74584, https://dx.doi.org/10.17811/ruo_datasets.74584
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/74584
PMID: https://hdl.handle.net/10651/74584, https://dx.doi.org/10.17811/ruo_datasets.74584
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/74584
Ver en: https://hdl.handle.net/10651/74584, https://dx.doi.org/10.17811/ruo_datasets.74584
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/74584
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/65292
Dataset. 2022
ANEXOS DEL ARTÍCULO. FORMACIÓN LABORAL DE LOS TRABAJADORES EN ESPAÑA. EVOLUCIÓN DURANTE EL PERÍODO DE CRISIS Y RECUPERACIÓN ECONÓMICA (2007-2016)
- García Espejo, María Isabel|||0000-0002-7944-3175
- Ibáñez Pascual, Marta|||0000-0001-5185-7467
Proyecto: //
DOI: http://hdl.handle.net/10651/65292, https://dx.doi.org/10.17811/ruo_datasets.65292
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/65292
HANDLE: http://hdl.handle.net/10651/65292, https://dx.doi.org/10.17811/ruo_datasets.65292
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/65292
PMID: http://hdl.handle.net/10651/65292, https://dx.doi.org/10.17811/ruo_datasets.65292
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/65292
Ver en: http://hdl.handle.net/10651/65292, https://dx.doi.org/10.17811/ruo_datasets.65292
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/65292
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/79191
Dataset. 2025
V-BAND SCATTERED FIELD MEASUREMENTS IN 8 DIFFERENT PLANES WITH AN L-SHAPED MULTISTATIC CONFIGURATION
- Hoyo Vijande, Alejandro del|||0009-0003-2399-2428
- Álvarez López, Yuri
- Laviada Martínez, Jaime
- Las Heras Andrés, Fernando Luis
In addition to the files containing the scattered field measurements, a PDF file with the schematic of the measurement setup is included, as well as a sample code written in MATLAB. This code applies SAR processing based on the measurements from one of the planes and aims to demonstrate how to import one of the files and process the data to generate a reflectivity image of the region of interest., This dataset contains samples of the scattered field from a set of flat metallic objects. It includes several files corresponding to eight different measurement planes, where the distances between the plane containing the antennas and the plane containing the targets are 74.3913 cm, 66.4120 cm, 61.4173 cm, 56.4063 cm, 51.4131 cm, 46.3873 cm, 41.4244 cm, and 36.4289 cm. The measurement setup corresponds to a multistatic L-shaped configuration. Two open-ended waveguides were used as antennas, which were moved along the two sides of the L using two high-precision rails to transmit (Tx) and receive (Rx) signals from different positions in the acquisition array. For each Tx-Rx channel, a total of 201 equally spaced measurements of the S21 parameter were taken between 55 GHz and 60 GHz using a PNA-X device. In addition to the measurements with the metallic targets, the dataset includes two measurements with aluminum foil covering the support structure and two background measurements conducted using the same structure but without the targets. These background measurements in planes one and eight can be used to eliminate clutter caused by various environmental reflections.
Proyecto: //
DOI: https://hdl.handle.net/10651/79191, https://dx.doi.org/10.17811/ruo_datasets.79191
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/79191
HANDLE: https://hdl.handle.net/10651/79191, https://dx.doi.org/10.17811/ruo_datasets.79191
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/79191
PMID: https://hdl.handle.net/10651/79191, https://dx.doi.org/10.17811/ruo_datasets.79191
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/79191
Ver en: https://hdl.handle.net/10651/79191, https://dx.doi.org/10.17811/ruo_datasets.79191
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/79191
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/80843
Dataset. 2025
DATA FOR "THICKNESS DEPENDENT RARE EARTH SEGREGATION IN MAGNETRON DEPOSITED NDCO
_{4.6}
- Díaz Fernández, Javier Ignacio
- Rodríguez Fernández, Jonathan
- Rubio Zuazo, Juan
Data contains readme file with an explanation to localize specific data.
Three sets of data:
Xray Photoemission data
Magnetic Hysteresis loops data
Xray Reflectivity data, The magnetic anisotropy of amorphous NdCo$_{4.6}$ compounds deposited by magnetron sputtering change with film thickness from in plane to out of plane anisotropy at thickness above 40 nm. Xray reflectivity measurements shows the progressive formation of an additional layer in between the 3 nm thick Si capping layer and the NdCo compound film. Hard Xray Photoemission spectroscoy (HAXPES) was used to analyze the composition and distribution of cobalt and neodymium at the top layers region of NdCo$_{4.6}$ films of thickness ranging from 5 nm to 65 nm using 7 keV, 10 keV and 13 keV incident photon energies, with inelastic electron mean free paths ranging from 7.2 nm to 12.3 nm in cobalt. The atomic cobalt concentration of the alloy deduced from HAXPES measurements at the Nd 3d and Co 2p excitations results to be below the nominal value, changing with thickness and incident photon energy. This proves a segregation of the rare earth at the surface of the NdCo$_{4.6}$ thin film which increases with thickness. The analysis of the background of the Co 2p and Nd 3d peaks was consistent with this conclusion. This demonstrates that neodymium incorporation in the cobalt lattice have a cost in energy which can be associated to strain due to the difference in volume between the two elements. The lowering of this strain energy will favor atomic anisotropic environments for neodymium that explains the perpendicular anisotropy and its thickness dependence of these NdCo compound films., European Synchrotron ESRF, the Spanish Ministerio de Ciencia, Innovacion y Universidades, and the Consejo Superior de Investigaciones Científicas for provision of synchrotron radiation at BM25 and for financial support through the projects PIE 2010-6-0E-013, 2021-60-E-030 and CEX2024-001445-S. J. D. and J. R-F. acknowledges Spanish Minister of Science and Innovation support under grants 104604RB/AEI/10.13039/501100011033 and PID2022-136784NB and by Agencia SEKUENS (Asturias) under grant UONANO IDE/2024/000678 with the support of FEDER funds
Proyecto: //
DOI: https://hdl.handle.net/10651/80843, https://dx.doi.org/10.17811/ruo_datasets.80843
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/80843
HANDLE: https://hdl.handle.net/10651/80843, https://dx.doi.org/10.17811/ruo_datasets.80843
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/80843
PMID: https://hdl.handle.net/10651/80843, https://dx.doi.org/10.17811/ruo_datasets.80843
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/80843
Ver en: https://hdl.handle.net/10651/80843, https://dx.doi.org/10.17811/ruo_datasets.80843
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/80843
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/79210
Dataset. 2025
DATASET FOR HEURISTIC-BASED INCREMENTAL LOCAL DOMAIN MODEL GENERATION
HEURISTICS LDM DATASET
- Quintela Pumares, Manuel
- Fernández Lanvin, Daniel
- Fernández Álvarez, Alberto Manuel|||0000-0002-8548-5830
Dataset used in the evaluation of the paper "Heuristic-Based Incremental Local Domain Model Generation", currently under review in "Information and Software Technology".
Context: Current front-end frameworks and technologies enable rich clients to operate autonomously without frequent server requests. To achieve this autonomy, clients must maintain a Local Domain Model (LDM), often derived from the Global Domain Model (GDM) on the backend. Manually designing an LDM that is consistent with the GDM requires handling nuanced dependencies, an error-prone task where oversight is easy.
Objective: To address these challenges we aim to: (a) formally map dependencies between GDM and LDM; (b) analyze effort and errors when modelling without assistance; and (c) provide a semi-automated method leveraging these dependencies to significantly reduce both effort and errors.
Method: To achieve these objectives, we propose a heuristic-based, step-by-step guided method. This approach leverages pre-existing GDM information to incrementally uncover dependencies and automate LDM construction as designers identify local behavior of GDM elements. We assessed this method's impact through an empirical experiment where we aimed to identify common mistakes and quantify effort during LDM construction. Expert UML modelers completed an LDM creation task both manually and with our tool-supported method. We recorded errors and cognitive effort to establish a baseline and measure impact. User perceptions were gathered via a survey; an analytical usability study based on GOMS complemented findings.
Results: The proportion of users committing errors decreased by 77.8% with the tool, and the average error count per user was reduced by 97.3%. Time to complete the task decreased by 35.0% and interactive effort by 44.6%, consistent with GOMS predictions. Surveys showed majority positive responses across all items.
Conclusions: Our approach effectively streamlines Local Domain Model creation. By automatically detecting dependencies and guiding designers, the tool drastically reduces error rates, cuts completion time, and lowers interaction volume. Expert users rated the method positively, affirming that benefits of guided, incremental LDM construction outweigh adoption effort., This work has been funded by the Government of the Principality of Asturias, with support from the European Regional Development Fund (ERDF) under project IDE/2024/000751 (GRU-GIC-24-070). Additional funding was provided by the University of Oviedo through its support for official research groups (PAPI-24-GR-REFLECTION).
Proyecto: //
DOI: https://hdl.handle.net/10651/79210, https://dx.doi.org/10.17811/ruo_datasets.79210
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/79210
HANDLE: https://hdl.handle.net/10651/79210, https://dx.doi.org/10.17811/ruo_datasets.79210
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/79210
PMID: https://hdl.handle.net/10651/79210, https://dx.doi.org/10.17811/ruo_datasets.79210
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/79210
Ver en: https://hdl.handle.net/10651/79210, https://dx.doi.org/10.17811/ruo_datasets.79210
RUO. Repositorio Institucional de la Universidad de Oviedo
oai:digibuo.uniovi.es:10651/79210
Buscador avanzado