Dataset.

Amplitude_results_figs_4_5 [Dataset] of Understanding life at high temperatures. Relationships of molecular channels in enzymes of methanogenic Archaea and their growth temperatures

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/281562
Digital.CSIC. Repositorio Institucional del CSIC
  • Ginsbach, Laura F.
  • González Grau, Juan Miguel
Los datos pertenecen al trabajo Ginsbach, Laura F.; González Grau, Juan Miguel: of Understanding life at high temperatures. Relationships of molecular channels in enzymes of methanogenic Archaea and their growth temperatures, Figure 4. Amplitude and average of the molecular tunnel dimensions, length (A, D, G), surface (B, E, H) and volume (C, F, I) (in Å), predicted for the methyl-CoM reductase (Mmr) gene subunits, alpha (A, B, C), beta (D, E, F) and gamma (G, H, I) from methanogenic Archaea classified in three classes of optimum growth temperature (<50ºC; 50-80ºC; >80ºC). Grey bars correspond to the amplitude of data observed for estimates of the molecular tunnel dimensions. Red squares represent the average dimensions for each Figure 5. Amplitude and average of the molecular tunnel dimensions, length (A, D, G), surface (B, E, H) and volume (C, F, I) (in Å), predicted for the heterodisulfide reductas (Hdr) gene subunits, A (A, B, C), B (D, E, F) and C (G, H, I) from methanogenic Archaea classified in three classes of optimum growth temperature (<50ºC; 50-80ºC; >80ºC). Grey bars correspond to the amplitude of data observed for estimates of the molecular tunnel dimensions. Red squares represent the average dimensions for each growth temperature class. Error bars for the average values represent a standard deviation., This is funding from the Ministry of Science and Innovation, project EQC2019-005634-P (cofunded by FEDER) and PID2020-119373GB-I00., Peer reviewed
 

DOI: http://hdl.handle.net/10261/281562, https://doi.org/10.20350/digitalCSIC/14769
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/281562

HANDLE: http://hdl.handle.net/10261/281562, https://doi.org/10.20350/digitalCSIC/14769
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/281562
 
Ver en: http://hdl.handle.net/10261/281562, https://doi.org/10.20350/digitalCSIC/14769
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/281562

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/281562
Dataset. 2022

AMPLITUDE_RESULTS_FIGS_4_5 [DATASET] OF UNDERSTANDING LIFE AT HIGH TEMPERATURES. RELATIONSHIPS OF MOLECULAR CHANNELS IN ENZYMES OF METHANOGENIC ARCHAEA AND THEIR GROWTH TEMPERATURES

Digital.CSIC. Repositorio Institucional del CSIC
  • Ginsbach, Laura F.
  • González Grau, Juan Miguel
Los datos pertenecen al trabajo Ginsbach, Laura F.; González Grau, Juan Miguel: of Understanding life at high temperatures. Relationships of molecular channels in enzymes of methanogenic Archaea and their growth temperatures, Figure 4. Amplitude and average of the molecular tunnel dimensions, length (A, D, G), surface (B, E, H) and volume (C, F, I) (in Å), predicted for the methyl-CoM reductase (Mmr) gene subunits, alpha (A, B, C), beta (D, E, F) and gamma (G, H, I) from methanogenic Archaea classified in three classes of optimum growth temperature (<50ºC; 50-80ºC; >80ºC). Grey bars correspond to the amplitude of data observed for estimates of the molecular tunnel dimensions. Red squares represent the average dimensions for each Figure 5. Amplitude and average of the molecular tunnel dimensions, length (A, D, G), surface (B, E, H) and volume (C, F, I) (in Å), predicted for the heterodisulfide reductas (Hdr) gene subunits, A (A, B, C), B (D, E, F) and C (G, H, I) from methanogenic Archaea classified in three classes of optimum growth temperature (<50ºC; 50-80ºC; >80ºC). Grey bars correspond to the amplitude of data observed for estimates of the molecular tunnel dimensions. Red squares represent the average dimensions for each growth temperature class. Error bars for the average values represent a standard deviation., This is funding from the Ministry of Science and Innovation, project EQC2019-005634-P (cofunded by FEDER) and PID2020-119373GB-I00., Peer reviewed





1106