Negociacion Informada Y Negociacion No Informada En El Mercado De Capitales Español

ECO2009-12819-C03-02

Nombre agencia financiadora Ministerio de Ciencia e Innovación
Acrónimo agencia financiadora MICINN
Programa Programa Nacional de Investigación Fundamental
Subprograma Investigación fundamental no-orientada
Convocatoria Investigación fundamental no-orientada
Año convocatoria 2009
Unidad de gestión Subdirección General de Proyectos de Investigación
Centro beneficiario UNIVERSIDAD DE ZARAGOZA
Centro realización FACULTAD DE CIENCIAS ECONÓMICAS Y EMPRESARIALES
Identificador persistente http://dx.doi.org/10.13039/501100004837

Publicaciones

Resultados totales (Incluyendo duplicados): 2
Encontrada(s) 1 página(s)

Mutual fund trading and portfolio disclosures

Zaguán. Repositorio Digital de la Universidad de Zaragoza
  • Ortiz, Cristina
  • Ramírez, Gloria
  • Vicente Gimeno, Luis Alfonso
This is the first study in a large European market which analyzes monthly portfolios to obtain evidence of equity fund trading around quarterly reports. A new portfolio-weight approach shows that managers disclose large-cap and well-known stocks with higher returns and hide the same return-loser stocks in the reporting months. A fund-size agency problem plays an important role in this window dressing evidence. Fund trading also shows that managers benefits from the January effect by buying small-cap stocks at the beginning of the year rather than causing this anomaly.




Does herding affect volatility? Implications for the Spanish stock market

Zaguán. Repositorio Digital de la Universidad de Zaragoza
  • Blasco, Natividad
  • Corredor, Pilar
  • Ferreruela, Sandra
According to rational expectation models, uninformed or liquidity trading make market price volatility rise. This paper sets out to analyse the impact of herding, which may be interpreted as one of the components of uninformed trading, on the volatility of the Spanish stock market. Herding is examined at the intraday level, considered the most reliable sampling frequency for detecting this type of investor behavior, and measured using the Patterson and Sharma (Working Paper, University of Michigan–Dearborn, 2006) herding intensity measure. Different volatility measures (historical, realized and implied) are employed. The results confirm that herding has a direct linear impact on volatility for all of the volatility measures considered, although the corresponding intensity is not always the same. In fact, herding variables seem to be useful in volatility forecasting and therefore in decision making when volatility is considered a key factor.