ALTA RESOLUCION Y ADAPTATIVIDAD EN MODELOS HIPERBOLICOS Y PROCESAMIENTO DE IMAGENES

MTM2011-22741

Nombre agencia financiadora Ministerio de Ciencia e Innovación
Acrónimo agencia financiadora MICINN
Programa Programa Nacional de Investigación Fundamental
Subprograma Investigación fundamental no-orientada
Convocatoria Investigación Fundamental No-Orientada
Año convocatoria 2011
Unidad de gestión Sin informar
Centro beneficiario UNIVERSIDAD DE VALENCIA
Centro realización DPTO. MATEMATICA APLICADA
Identificador persistente http://dx.doi.org/10.13039/501100004837

Publicaciones

Found(s) 1 result(s)
Found(s) 1 page(s)

High order Nyström methods for transmission problems for Helmholtz equation

Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
  • Domínguez Baguena, Víctor
  • Turc, Catalin
We present super-algebraic compatible Nyström discretizations for the four Helmholtz boundary operators of Calderón’s calculus on smooth closed curves in 2D. These discretizations are based on appropriate splitting of the kernels combined with very accurate product-quadrature rules for the different singularities that such kernels present. A Fourier based analysis shows that the four discrete operators converge to the continuous ones in appropriate Sobolev norms. This proves that Nyström discretizations of many popular integral equation formulations for Helmholtz equations are stable and convergent. The convergence is actually super-algebraic for smooth solutions., Catalin Turc gratefully acknowledge support from NSF through contract DMS-1312169. Víctor Domínguez is partially supported by Ministerio de Economía y Competitividad, through the grant MTM2014-52859.
This research was partially supported by Spanish MINECO grants MTM2011-22741 and MTM2014-54388.