ANALISIS VECTORIAL, MULTILINEAL Y APROXIMACION

PGC2018-095366-B-I00

Nombre agencia financiadora Agencia Estatal de Investigación
Acrónimo agencia financiadora AEI
Programa Programa Estatal de Generación de Conocimiento y Fortalecimiento Científico y Tecnológico del Sistema de I+D+i
Subprograma Subprograma Estatal de Generación de Conocimiento
Convocatoria Proyectos de I+D de Generación de Conocimiento
Año convocatoria 2018
Unidad de gestión Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020
Centro beneficiario UNIVERSIDAD DE VALENCIA
Identificador persistente http://dx.doi.org/10.13039/501100011033

Publicaciones

Found(s) 2 result(s)
Found(s) 1 page(s)

Banach Lattice Structures and Concavifications in Banach Spaces

RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
  • Agud Albesa, Lucia|||0000-0002-1222-7988
  • Calabuig, J. M.|||0000-0001-8398-8664
  • Juan, Maria Aranzazu
  • Sánchez Pérez, Enrique Alfonso|||0000-0001-8854-3154
[EN] Let (Omega,sigma,mu) be a finite measure space and consider a Banach function space Y(mu). We say that a Banach space E is representable by Y(mu) if there is a continuous bijection I:Y(mu)-> E. In this case, it is possible to define an order and, consequently, a lattice structure for E in such a way that we can identify it as a Banach function space, at least regarding some local properties. General and concrete applications are shown, including the study of the notion of the pth power of a Banach space, the characterization of spaces of operators that are isomorphic to Banach lattices of multiplication operators, and the representation of certain spaces of homogeneous polynomials on Banach spaces as operators acting in function spaces., The authors would like to thank the referees for their valuable comments, which helped to improve the manuscript. The work of the second author was supported by the Ministerio de Ciencia e Innovacion, Agencia Estatal del Investigacion (Spain) and FEDER under project #PGC2018-095366-B-100. The work of the fourth author was supported by the Ministerio de Ciencia e Innovacion, Agencia Estatal del Investigacion (Spain) and FEDER under project #MTM2016 77054-C2-1-P. We did not receive any funds for covering the costs of publishing in open access.




Absolutely (q, 1)-summing operators acting in C(K)-spaces and the weighted Orlicz property for Banach spaces

RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
  • Calabuig, J. M.|||0000-0001-8398-8664
  • Sánchez Pérez, Enrique Alfonso|||0000-0001-8854-3154
[EN] We provide a new separation-based proof of the domination theorem for (q, 1)-summing operators. This result gives the celebrated factorization theorem of Pisier for (q, 1)-summing operators acting in C(K)-spaces. As far as we know, none of the known versions of the proof uses the separation argument presented here, which is essentially the same that proves Pietsch Domination Theorem for p-summing operators. Based on this proof, we propose an equivalent formulation of the main summability properties for operators, which allows to consider a broad class of summability properties in Banach spaces. As a consequence, we are able to show new versions of the Dvoretzky-Rogers Theorem involving other notions of summability, and analyze some weighted extensions of the q-Orlicz property., Both authors were supported by the Ministerio de Ciencia, Innovacion y Universidades, Agencia Estatal de Investigacion (Spain) and FEDER, the first author under project PGC2018-095366-B-100 and the second under project MTM2016-77054-C2-1-P.