HACIA NUEVOS NANOMATERIALES PARA TECNOLOGIAS EMERGENTES
PID2019-106165GB-C22
•
Nombre agencia financiadora Agencia Estatal de Investigación
Acrónimo agencia financiadora AEI
Programa Programa Estatal de Generación de Conocimiento y Fortalecimiento Científico y Tecnológico del Sistema de I+D+i
Subprograma Subprograma Estatal de Generación de Conocimiento
Convocatoria Proyectos I+D
Año convocatoria 2019
Unidad de gestión Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020
Centro beneficiario UNIVERSIDAD DE BARCELONA
Identificador persistente http://dx.doi.org/10.13039/501100011033
Publicaciones
Found(s) 6 result(s)
Found(s) 1 page(s)
Found(s) 1 page(s)
Elucidating individual magnetic contributions in bi-magnetic Fe3O4/Mn3O4 Core/Shell nanoparticles by polarized powder neutron diffraction
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
- Golosovsky, Igor V.
- Kibalin, Iurii A.
- Gukasov, Arsen
- Gómez Roca, Alejando
- López Ortega, Alberto
- Estrader, Marta
- Vasilakaki, Marianna
- Trohidou, Kalliopi
- Hansen, T. C.
- Puente-Orench, I.
- Lelièvre-Berna, E.
- Nogués, Josep
Heterogeneous bi-magnetic nanostructured systems have had a sustained interest during the last decades owing to their unique magnetic properties and the wide range of derived potential applications. However, elucidating the details of their magnetic properties can be rather complex. Here, a comprehensive study of Fe3O4/Mn3O4 core/shell nanoparticles using polarized neutron powder diffraction, which allows disentangling the magnetic contributions of each of the components, is presented. The results show that while at low fields the Fe3O4 and Mn3O4 magnetic moments averaged over the unit cell are antiferromagnetically coupled, at high fields, they orient parallel to each other. This magnetic reorientation of the Mn3O4 shell moments is associated with a gradual evolution with the applied field of the local magnetic susceptibility from anisotropic to isotropic. Additionally, the magnetic coherence length of the Fe3O4 cores shows some unusual field dependence due to the competition between the antiferromagnetic interface interaction and the Zeeman energies. The results demonstrate the great potential of the quantitative analysis of polarized neutron powder diffraction for the study of complex multiphase magnetic materials., I.V.G. acknowledges financial support from the Russian Foundation for Basic Research under Grant No 20-02-00109. A.G.R. and J.N. acknowledge financial support from the grants PID2019-106229RB-I0 funded by MCIN/AEI/10.13039/50110001103 and 2021-SGR-00651 from Generalitat de Catalunya. I.K. and A.G. acknowledge the European Union's H2020 reserach and innovation program, Grant agreement No 871072. A.G.R. acknowledges financial support from RYC2019-027449-I funded by MCIN/AEI/10.13039/501100011033. ICN2 is funded by the CERCA programme/Generalitat de Catalunya. The ICN2 is supported by the CEX2021–001214–S grant funded by MCIN/AEI/10.13039/501100011033. M.E. acknowledges the grants RYC2018-024396-I and PID2019-106165GB-C22 funded by MCIN/AEI/ 10.13039/501100011033 and by “ESF Investing in your future.” A.L.O. acknowledges financial support from the grants PID2021-122613OB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and PJUPNA2020 from Universidad Pública de Navarra.
Direct evidence of a graded magnetic interface in bimagnetic core/shell nanoparticles using electron magnetic circular dichroism (EMCD)
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
- Pozo Bueno, Daniel del
- Varela, María
- Estrader, Marta
- López Ortega, Alberto
- Gómez Roca, Alejando
- Nogués, Josep
- Peiró, Francesca
- Estradé, Sònia
Interfaces play a crucial role in composite magnetic materials and particularly in bimagnetic core/shell nanoparticles. However, resolving the microscopic magnetic structure of these nanoparticles is rather complex. Here, we investigate the local magnetization of antiferromagnetic/ferrimagnetic FeO/Fe3O4 core/shell nanocubes by electron magnetic circular dichroism (EMCD). The electron energy-loss spectroscopy (EELS) compositional analysis of the samples shows the presence of an oxidation gradient at the interface between the FeO core and the Fe3O4 shell. The EMCD measurements show that the nanoparticles are composed of four different zones with distinct magnetic moment in a concentric, onion-type, structure. These magnetic areas correlate spatially with the oxidation and composition gradient with the magnetic moment being largest at the surface and decreasing toward the core. The results show that the combination of EELS compositional mapping and EMCD can provide very valuable information on the inner magnetic structure and its correlation to the microstructure of magnetic nanoparticles., The authors acknowledge the financial support from the Spanish Minister of Science and Innovation (MICINN) through the projects PID2019-106165GB-C21, PID2019-106165GB-C22, and PID2019-106229RB-I00. They also acknowledge funding from Generalitat de Catalunya through the 2017-SGR-292 and 2017-SGR-776 projects. In addition, research at UCM was supported by MINECO/FEDER MAT2015-66888-C3-3-R and RTI2018-097895-B-C43 grants. ICN2 is funded by the CERCA programme/Generalitat de Catalunya. The ICN2 is supported by the Severo Ochoa Centres of Excellence programme, funded by the Spanish Research Agency (AEI, Grant SEV-2017-0706). M.E. thanks the Spanish MICINN and AEI/FSE for Ramón y Cajal contract (RYC2018-024396-I). A.L.O. acknowledges support from the Universidad Pública de Navarra (Grant PJUPNA2020). STEM-EELS observations carried out at the Centro Nacional de Microscopía Electrónica at Universidad Complutense de Madrid, Spain (ICTS ELECMI).
Direct Evidence of a Graded Magnetic Interface in Bimagnetic Core/Shell Nanoparticles Using Electron Magnetic Circular Dichroism (EMCD)
Digital.CSIC. Repositorio Institucional del CSIC
- Pozo-Bueno, Daniel del
- Varela, María
- Estrader, Marta
- López-Ortega, Alberto
- Roca, Alejandro G.
- Nogués, Josep
- Peiró, Francesca
- Estradé, Sònia
Interfaces play a crucial role in composite magnetic materials and particularly in bimagnetic core/shell nanoparticles. However, resolving the microscopic magnetic structure of these nanoparticles is rather complex. Here, we investigate the local magnetization of antiferromagnetic/ferrimagnetic FeO/Fe3O4 core/shell nanocubes by electron magnetic circular dichroism (EMCD). The electron energy-loss spectroscopy (EELS) compositional analysis of the samples shows the presence of an oxidation gradient at the interface between the FeO core and the Fe3O4 shell. The EMCD measurements show that the nanoparticles are composed of four different zones with distinct magnetic moment in a concentric, onion-type, structure. These magnetic areas correlate spatially with the oxidation and composition gradient with the magnetic moment being largest at the surface and decreasing toward the core. The results show that the combination of EELS compositional mapping and EMCD can provide very valuable information on the inner magnetic structure and its correlation to the microstructure of magnetic nanoparticles., The authors acknowledge the financial support from the Spanish Minister of Science and Innovation (MICINN) through the projects PID2019-106165GB-C21, PID2019-106165GB-C22, and PID2019-106229RB-I00. They also acknowledge funding from Generalitat de Catalunya through the 2017-SGR-292 and 2017-SGR-776 projects. In addition, research at UCM was supported by MINECO/FEDER MAT2015-66888-C3-3-R and RTI2018-097895-B-C43 grants. ICN2 is funded by the CERCA programme/Generalitat de Catalunya. The ICN2 is supported by the Severo Ochoa Centres of Excellence programme, funded by the Spanish Research Agency (AEI, Grant SEV-2017-0706). M.E. thanks the Spanish MICINN and AEI/FSE for Ramón y Cajal contract (RYC2018-024396-I). A.L.O. acknowledges support from the Universidad Pública de Navarra (Grant PJUPNA2020). STEM-EELS observations carried out at the Centro Nacional de Microscopía Electrónica at Universidad Complutense de Madrid, Spain (ICTS ELECMI).
Elucidating individual magnetic contributions in bi-magnetic Fe3O4/Mn3O4 core/shell nanoparticles by polarized powder neutron diffraction
Digital.CSIC. Repositorio Institucional del CSIC
- Golosovsky, Igor V.
- Kibalin. I. A.
- Gukasov, A.
- Roca, Alejandro G.
- López-Ortega, Alberto
- Estrader, Marta
- Vasilakaki, Marianna
- Trohidou, Kalliopi N.
- Hansen, T. C.
- Puente-Orench, Inés
- Lelièvre-Berna, E.
- Nogués, Josep
Heterogeneous bi-magnetic nanostructured systems have had a sustained interest during the last decades owing to their unique magnetic properties and the wide range of derived potential applications. However, elucidating the details of their magnetic properties can be rather complex. Here, a comprehensive study of Fe3 O4 /Mn3 O4 core/shell nanoparticles using polarized neutron powder diffraction, which allows disentangling the magnetic contributions of each of the components, is presented. The results show that while at low fields the Fe3 O4 and Mn3 O4 magnetic moments averaged over the unit cell are antiferromagnetically coupled, at high fields, they orient parallel to each other. This magnetic reorientation of the Mn3 O4 shell moments is associated with a gradual evolution with the applied field of the local magnetic susceptibility from anisotropic to isotropic. Additionally, the magnetic coherence length of the Fe3 O4 cores shows some unusual field dependence due to the competition between the antiferromagnetic interface interaction and the Zeeman energies. The results demonstrate the great potential of the quantitative analysis of polarized neutron powder diffraction for the study of complex multiphase magnetic materials., I.V.G. acknowledges financial support from the Russian Foundation for Basic Research under Grant No 20-02-00109. A.G.R. and J.N. acknowledge financial support from the grants PID2019-106229RB-I0 funded by MCIN/AEI/10.13039/50110001103 and 2021-SGR-00651 from Generalitat de Catalunya. I.K. and A.G. acknowledge the European Union's H2020 reserach and innovation program, Grant agreement No 871072. A.G.R. acknowledges financial support from RYC2019-027449-I funded by MCIN/AEI/10.13039/501100011033. ICN2 is funded by the CERCA programme/Generalitat de Catalunya. The ICN2 is supported by the CEX2021–001214–S grant funded by MCIN/AEI/10.13039/501100011033. M.E. acknowledges the grants RYC2018-024396-I and PID2019-106165GB-C22 funded by MCIN/AEI/ 10.13039/501100011033 and by “ESF Investing in your future.” A.L.O. acknowledges financial support from the grants PID2021-122613OB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and PJUPNA2020 from Universidad Pública de Navarra., With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001214-S)., Peer reviewed
Direct evidence of a graded magnetic interface in bimagnetic core/shell nanoparticles using electron magnetic circular dichroism (EMCD)
Dipòsit Digital de Documents de la UAB
- Del Pozo Bueno, Daniel|||0000-0003-1819-298X
- Varela del Arco, María|||0000-0002-6582-7004
- Estrader, Marta|||0000-0003-3379-8234
- López-Ortega, Alberto|||0000-0003-3440-4444
- Gómez Roca, Alejandro|||0000-0001-6610-9197
- Nogués, Josep|||0000-0003-4616-1371
- Peiro, Francesca|||0000-0002-5697-0554
- Estrade, Sonia|||0000-0002-3340-877X
Interfaces play a crucial role in composite magnetic materials and particularly in bimagnetic core/shell nanoparticles. However, resolving the microscopic magnetic structure of these nanoparticles is rather complex. Here, we investigate the local magnetization of antiferromagnetic/ferrimagnetic FeO/Fe3O4 core/shell nanocubes by electron magnetic circular dichroism (EMCD). The electron energy-loss spectroscopy (EELS) compositional analysis of the samples shows the presence of an oxidation gradient at the interface between the FeO core and the Fe3O4 shell. The EMCD measurements show that the nanoparticles are composed of four different zones with distinct magnetic moment in a concentric, onion-type, structure. These magnetic areas correlate spatially with the oxidation and composition gradient with the magnetic moment being largest at the surface and decreasing toward the core. The results show that the combination of EELS compositional mapping and EMCD can provide very valuable information on the inner magnetic structure and its correlation to the microstructure of magnetic nanoparticles.
Elucidating Individual Magnetic Contributions in Bi-Magnetic Fe3O4/Mn3O4 Core/Shell Nanoparticles by Polarized Powder Neutron Diffraction
Dipòsit Digital de Documents de la UAB
- Golosovsky, Igor V.|||0000-0002-2667-4711
- Kibalin, I.A.|||0000-0003-2398-2652
- Gukasov, Arsen|||0000-0003-2763-468X
- Gómez Roca, Alejandro|||0000-0001-6610-9197
- López-Ortega, Alberto|||0000-0003-3440-4444
- Estrader, Marta|||0000-0003-3379-8234
- Vasilakaki, Marianna
- Trohidou, Kalliopi N.
- Hansen, T.C.
- Puente Orench, Inés|||0000-0001-5491-1238
- Lelièvre-Berna, E.
- Nogués, Josep|||0000-0003-4616-1371
Heterogeneous bi-magnetic nanostructured systems have had a sustained interest during the last decades owing to their unique magnetic properties and the wide range of derived potential applications. However, elucidating the details of their magnetic properties can be rather complex. Here, a comprehensive study of FeO/MnO core/shell nanoparticles using polarized neutron powder diffraction, which allows disentangling the magnetic contributions of each of the components, is presented. The results show that while at low fields the FeO and MnO magnetic moments averaged over the unit cell are antiferromagnetically coupled, at high fields, they orient parallel to each other. This magnetic reorientation of the MnO shell moments is associated with a gradual evolution with the applied field of the local magnetic susceptibility from anisotropic to isotropic. Additionally, the magnetic coherence length of the FeO cores shows some unusual field dependence due to the competition between the antiferromagnetic interface interaction and the Zeeman energies. The results demonstrate the great potential of the quantitative analysis of polarized neutron powder diffraction for the study of complex multiphase magnetic materials.