Resultados totales (Incluyendo duplicados): 47
Encontrada(s) 5 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312498
Dataset. 2021

DEFECT ENGINEERING IN SOLUTION-PROCESSED POLYCRYSTALLINE SNSE LEADS TO HIGH THERMOELECTRIC PERFORMANCE [DATASET]

  • Liu, Yu
  • Calcabrini, Mariano
  • Yu, Yuan
  • Lee, Seung-Ho
  • Chang, Cheng
  • David, Jeremy
  • Ghosh, T.
  • Spadaro, Maria Chiara
  • Xie, Chenyang
  • Cojocaru-Mirédin, Oana
  • Arbiol, Jordi
  • Ibáñez, María
29 pages. -- Content: The tracking process of adsorption of CdSe species on the SnSe surface; XRD patterns of SnSe and SnSe-x%CdSe nanocomposites; SEM images of SnSe-3%CdSe nanocomposites at the different stages; SEM images of annealed SnSe-x%CdSe nanopowders; Grain size evolution study for bare SnSe and SnSe-3%CdSe; SEM images at different magnifications of SnSe and SnSe-3%CdSe pellets; EBSD microstructure of SnSe and SnSe-3%CdSe pellets; XRD pattern of recrystallized CdSe; SEM images of annealed SnSe powder at 350°C; EDS elemental mapping for SnSe-3%CdSe; Surface treatment; Thermogravimetric analyses; SnSe-CdSe phase diagram; High-temperature XRD analyses of SnSe and SnSe-3%CdSe; Lattice parameters and unit cell volume of SnSe-3%PbS pellet; TE properties of SnSe-CdSe samples with different content of CdSe; Band structure changes in SnSe induced by the CdSe NPs; TE properties of SnSe and SnSe-3%CdSe measured in parallel direction; Heat capacity Cp of SnSe-3%CdSe; Percentage variations in the TE properties of SnSe-x%CdSe compared to SnSe; Lattice thermal conductivity (κL) calculation; Literature comparison; TEM images of SnSe-3%CdSe sample; Material stability and repeatability; Cylindrical pellet cutting; Theoretical zT prediction; Pellet density and composition; References., SnSe has emerged as one of the most promising materials for thermoelectric energy conversion due to its extraordinary performance in its single-crystal form and its low-cost constituent elements. However, to achieve an economic impact, the polycrystalline counterpart needs to replicate the performance of the single crystal. Herein, we optimize the thermoelectric performance of polycrystalline SnSe produced by consolidating solution-processed and surface-engineered SnSe particles. In particular, the SnSe particles are coated with CdSe molecular complexes that crystallize during the sintering process, forming CdSe nanoparticles. The presence of CdSe nanoparticles inhibits SnSe grain growth during the consolidation step due to Zener pinning, yielding a material with a high density of grain boundaries. Moreover, the resulting SnSe–CdSe nanocomposites present a large number of defects at different length scales, which significantly reduce the thermal conductivity. The produced SnSe–CdSe nanocomposites exhibit thermoelectric figures of merit up to 2.2 at 786 K, which is among the highest reported for solution-processed SnSe., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/312498
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312498
HANDLE: http://hdl.handle.net/10261/312498
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312498
PMID: http://hdl.handle.net/10261/312498
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312498
Ver en: http://hdl.handle.net/10261/312498
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312498

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
Dataset. 2022

SUPPORTING INFORMATION 2D/2D HETEROJUNCTION OF TIO2 NANOSHEETS / ULTRATHIN G-C3N4 FOR EFFICIENT PHOTOCATALYTIC HYDROGEN EVOLUTION

  • Du, Ruifeng
  • Li, Baoying
  • Han, Xu
  • Xiao, Ke
  • Wang, Xiang
  • Zhang, Chaoqi
  • Arbiol, Jordi
  • Cabot, Andreu
10 pages. -- Figures and tables. -- Figure S1: SEM image of (a) bulk g-C3N4 and (b) ultrathin g-C3N4, (c) N2 adsorption-desorption isotherms of bCN and uCN. -- Figure S2: FTIR spectra of OAC, OLMA and TiO2 before and after ligands remove. -- Figure S3: Zeta potential distribution spectrum of TiO2 after ligands removal (a) and uCN (b). -- Figure S4: SEM image and EDS compositional maps of a T1/uCN1 composite. -- Figure S5: SEM image of T1/uCN2 and corresponding EDS spectrum. -- Figure S6: SEM image of T1/uCN2 and corresponding EDS spectrum. -- Figure S7: SEM image of T1/uCN2 and corresponding EDS spectrum; Figure S8: Chromatogram plots for 0.5 ml of standard hydrogen injected every half hour. -- Table S1: Gas Chromatography Peak Processing Data based on figure S8. -- Figure S9: Standard hydrogen curve for gas chromatography. -- Table S2: Exponential decay-fitted parameters of fluorescence lifetime of uCN, TiO2 and T1/uCN1. -- Figure S10: Photocatalytic hydrogen generation amount on bCN, TiO2 and T1/bCN1 during 4 h under simulated solar light irradiation; Table S3: Photocatalytic hydrogen production about TiO2/g-C3N4 based catalysts. -- Table S4: The AQE values with different incident light wavelengths for T1/uCN1. -- Figure S11: (a) Stability cycles of the T1/uCN1 for H2 evolution under simulated solar light irradiation; (b) TEM image of T1/uCN1 after 20 h photocatalytic H2 evolution reaction and (c) XRD pattern of T1/uCN1 before and after 20 h photocatalytic H2O2 evolution reaction., CN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCAProgramme / Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
HANDLE: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
PMID: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
Ver en: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329941
Dataset. 2022

SUPPORTING INFORMATION FOR A NOVEL Π-D CONJUGATED COBALT TETRAAZA[14]ANNULENE BASED ATOMICALLY DISPERSED ELECTROCATALYST FOR EFFICIENT CO2 REDUCTION

  • Liang, Zhifu
  • Zhang, Ting
  • Cao, Pengfei
  • Yoshida, Takefumin
  • Tang, Weiqiang
  • Wang, Xiang
  • Zuo, Yong
  • Tang, Peng-Yi
  • Heggen, Marc
  • Dunin-Borkowski, Rafal E.
  • Morante, Joan Ramón
  • Cabot, Andreu
  • Yamashita, Masahiro
  • Arbiol, Jordi
16 pages. -- Scheme S1. Scheme of the synthesis of Co-TAA. -- Figure S1. FT-IR spectra of the model compound Co-TAA, and Poly-TAA-Co powder. -- Figure S2. (a-b) HRTEM images and (c-d) STEM images of Poly-TAA-Co. -- Figure S3. EELS chemical composition maps from the red squared area of the STEM micrograph. Individual Co L2,3-edges at 779 eV (red), N K-edges at 401 eV (green), O K-edges at 532 eV (blue), and C-K edges at 284 eV (grey) and composites of Co-N, Co-O, Co-C, N-O and Co-N-C. -- Figure S4. (a)-(b) Survey, high resolution C1s XPS spectra of Poly-TAA powder, respectively. -- Figure S5. (a) Survey, high resolution C1s XPS spectra of Poly-TAA-Co powder, respectively. -- Figure S6 TGA analysis of Poly-TAA-Co under argon by heating to 600 ℃ at the rate of 5 ℃/min. -- Table S1. Co K-edge EXAFS fitting parameters for Poly-TAA-Co. -- Figure S7. N2 adsorption and desorption of Poly-TAA (a), Poly-TAA-Co (b) and Poly-TAA-Co-CNT (c), respectively. -- Figure S8. (a) Total current density of Poly-TAA-Co-CNT (7:3). (b) FE of CO and H2 at various potentials for Poly-TAA-Co-CNT (7:3). -- Figure S9 Current density for H2 production on Poly-TAA-Co-CNT(1:1) and Poly-TAA-Co-CNT(3:7). and. -- Figure S10. Nyquist plots of the electrochemical impedance spectroscopy (EIS) data of (a) Poly-TAA-Co, (b) Poly-TAA-Co-CNT(1:1) and Poly-TAA-Co-CNT(3:7) electrodes after the activation process. -- Figure S11. Linear sweep voltammetry (LSV) curves of (a) Poly-TAA-Co. -- Figure S12. FE of H2 at various potentials on Co-TAA-CNT(3:7), CoPc-CNT(3:7) and Poly-TAA-Co-CNT(3:7). -- Figure S13. XRD patterns of Poly-TAA-Co-CNT loaded on carbon paper before and after CO2RR. -- Figure S14 HAADF-STEM (a, c), BF-TEM (b, d) and HRTEM micrographs (c, e) of Poly-TAA-Co-CNT (3:7) sample (before and after CO2RR). -- Figure S15. EELS chemical composition maps obtained from the red squared area of the STEM micrograph. Individual Co L2,3-edges at 779 eV (red), N K-edges at 401 eV (green), O K-edges at 532 eV (blue), and C-K edges at 284 eV (grey) and composites of Co-N, Co-O, Co-C, N-O and Co-N-C. (Poly-TAA-Co-CNT (3:7), after electrocatalytic CO2RR). -- Figure S16. Calculated energy diagrams for CO2 to CO at -0.5 V conversion on CoPc and CoTAA molecule, respectively. -- Table S2. The comparison of electrochemical reduction of CO2 to CO for reported cobalt based electrocatalysts., ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and ICN2 and IREC are funded by the CERCA Programme /Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/329941
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329941
HANDLE: http://hdl.handle.net/10261/329941
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329941
PMID: http://hdl.handle.net/10261/329941
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329941
Ver en: http://hdl.handle.net/10261/329941
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329941

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329951
Dataset. 2022

SUPPORTING INFORMATION A DEPROTECTION-FREE METHOD FOR HIGH-YIELD SYNTHESIS OF GRAPHDIYNE POWDER WITH IN SITU FORMED CUO NANOPARTICLES

  • Li, Jian
  • Han, Xu
  • Wang, Dongmei
  • Zhu, Lei
  • Ha-Thi, Minh-Huong
  • Pino, Thomas
  • Arbiol, Jordi
  • Wu, Li-Zhu
  • Ghazzal, Mohamed Nawfal
11 pages. -- PDF files includes: Experimental section; Photocatalytic experiment; Synthesis of GDY powder; Preparation of CuO/GDY/TiO2 and GDY/TiO2; Preparation of Pt loaded TiO2, tables and figures. -- Figure S1. The prepared GDY powder by using deprotection-free method. -- Table S1. Screening of catalysts and solvents for the direct coupling reaction of HEB-TMS. + entry 15 was performed under Ar conditions. -- Figure S2. GC-MS spectra of the DMF solution after reaction (balck line) and the standard curve of the corresponding compound (red line). -- Figure S3. ICP-Mass results for content of Cu in the prepared CuO/GDY samples. -- Figure S4. Low- and high-magnification SEM images of the prepared CuO/GDY samples. -- Figure S5. 1*1*1 unit crystal model of CuO and atomic supercell model illustration of the CuO nanoparticle oriented as in TEM images. -- Table S2. Comparison between the experimental and the theoretical bulk plane spacing distances and angles between planes. -- Figure S6. High-resolution XPS spectra of Si in GDY. -- Table S3. The atomic percentage of different elements in pure GDY. -- Figure S7. XRD spectra of TiO2 and CuO/GDY/TiO2 with different content. -- Figure S8. (a) Raman spectra and (b) enlarged spectra of TiO2 and CuO/GDY/TiO2 with different content. - -Figure S9. (a) the full XPS spectra of TiO2 and CuO/GDY/TiO2; (b) high-resolution XPS spectra of Cu in CuO/GDY/TiO2. -- Figure S10. UV-Vis spectra of TiO2 and CuO/GDY/TiO2 with different content. -- Figure S11. photocurrent test of CuO/GDY/TiO2, GDY/TiO2, CNT/TiO2 and GR/TiO2. -- Figure S12. Tauc plot of the prepared GDY powder. -- Figure S13. Valence band spectra of the prepared GDY powder by XPS. -- Figure S14. (a) High-resolution XPS spectra of Cu in CuO/GDY/TiO2 before and after photocatalysis; (b) fitting of Cu in in CuO/GDY/TiO2 after photocatalysis. In comparison, the satellite observed for Cu 2p (corresponding to Cu2+) is significantly reduced after illumination. -- Figure S15. The proposed photocatalytic mechanism of the CuO/GDY/TiO2 photocatalysts., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329951
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329951
HANDLE: http://hdl.handle.net/10261/329951
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329951
PMID: http://hdl.handle.net/10261/329951
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329951
Ver en: http://hdl.handle.net/10261/329951
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329951

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329972
Dataset. 2022

SUPPLEMENTAL MATERIAL: DOUBLING THE MOBILITY OF INAS/INGAAS SELECTIVE AREA GROWN NANOWIRES

  • Beznasyuk, Daria V.
  • Martí-Sànchez, Sara
  • Kang, Jung-Hyun
  • Tanta, Rawa
  • Rajpalke, Mohana
  • Stankevič, T.
  • Wulff, Anna Christensen
  • Spadaro, Maria Chiara
  • Bergamaschini, Roberto
  • Maka, Nikhil N.
  • Petersen, Christian Emanuel N.
  • Carrad, Damon J.
  • Jespersen, Thomas Sand
  • Arbiol, Jordi
  • Krogstrup, Peter
20 pages. -- PDF file includes S1. Substrate fabrication and growth details; S2. Degradation of surface topography after thermal oxide removal prior nanowire growth; S3. Faceting of GaAs(Sb) vs GaAs nanowires; S4. The role of InGaAs growth temperature; S5. The role of InAs growth temperature; S6. InAs/InGaAs field effect mobility measurements: influence of the InGaAs buffer growth temperature; S7. InAs/InGaAs band structure simulations; S8. Transport measurements of InGaAs/GaAs(Sb) SAG nanowires without the InAs channel; S9. InAs/InGaAs field effect mobility measurements: influence of the InAs growth temperature, figures and tables., ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/329972
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329972
HANDLE: http://hdl.handle.net/10261/329972
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329972
PMID: http://hdl.handle.net/10261/329972
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329972
Ver en: http://hdl.handle.net/10261/329972
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329972

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329974
Dataset. 2022

SUPPORTING INFORMATION FOR DIRECT OBSERVATION OF THE CHEMICAL TRANSFORMATIONS IN BIVO4 PHOTOANODES UPON PROLONGED LIGHT-AGING TREATMENTS

  • Arcas, Ramón
  • Cardenas-Morcoso, Drialys
  • Spadaro, Maria Chiara
  • García-Tecedor, Miguel
  • Mesa, Camilo A.
  • Arbiol, Jordi
  • Fabregat-Santiago, Francisco
  • Giménez, Sixto
  • Mas-Marzá, Elena
11 pages. -- PDF includes: 1. Experimental section; 2. Cyclic voltammetries measurements; 3. Morphological and structural characterisation data from SEM, DRX, TEM, SAED and STEM; 4. Electrochemical characterisation data by impedance spectroscopy, figures and tables., ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant no. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/329974
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329974
HANDLE: http://hdl.handle.net/10261/329974
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329974
PMID: http://hdl.handle.net/10261/329974
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329974
Ver en: http://hdl.handle.net/10261/329974
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329974

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330227
Dataset. 2022

SUPPORTING INFORMATION MOF-DERIVED ULTRATHIN COBALT MOLYBDENUM PHOSPHIDE NANOSHEETS FOR EFFICIENT ELECTROCHEMICAL OVERALL WATER SPLITTING

  • Wang, Xiang
  • Yang, Linlin
  • Xing, Congcong
  • Han, Xu
  • Du, Ruifeng
  • He, Ren
  • Guardia, Pablo
  • Arbiol, Jordi
  • Cabot, Andreu
8 pages. -- Figure S1. SEM images of CoMoP. -- Figure S2. (a) SEM image of Co–Mo MOFs. (b–c) SEM images and (d) EDX spectrum of CoMoP. -- Figure S3. (a) SEM image of Na2MoO4-ZIF-67. (b–c) SEM images and (d) EDX spectrum Mo–CoP. -- Figure S4. (a) SEM image of ZIF-67. (b–c) SEM images and (d) EDX spectrum CoP. -- Figure S5. (a–d) TEM image of CoMoP. -- Figure S6. (a–d) HAADF-STEM micrographs of CoMoP. -- Figure S7. EELS chemical composition maps obtained from the red squared area of the STEM mi-crograph. Individual Co L2,3-edges at 779 eV (red), Mo M4,5-edges at 230 eV (green), P L2,3-edges at 132 eV (blue), N K-edge at 401 eV (pink) and C K-edge at 284 eV (orange). -- Figure S8. (a) OER and (b) HER polarization curves of CoMoP with different Mo content in 1.0 M KOH. -- Figure S9. Cyclic voltammograms for (a) CoMoP; (b) Mo–CoP; (c) CoP and (d) RuO2 in the non-faradaic region of 1.12–1.22 V vs. RHE at various scan rates. -- Figure S10. (a–c) SEM image and d) EDX spectrum of CoMoP after long term OER stability test-ing. -- Figure S11. (a–c) SEM image and d) EDX spectrum of CoMoP after long term HER stability test-ing. -- Table S1. Comparison of OER performance of CoMoP with some previously reported CoP-based catalysts in 1.0 M KOH solution. -- Table S2. Comparison of HER performance of CoMoP with some previously reported CoP-based catalysts in 1.0 M KOH solution. -- Table S3. Comparison of OWS performance of CoMoP with some previously reported CoP-based catalysts in 1.0 M KOH solution., ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/330227
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330227
HANDLE: http://hdl.handle.net/10261/330227
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330227
PMID: http://hdl.handle.net/10261/330227
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330227
Ver en: http://hdl.handle.net/10261/330227
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330227

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330231
Dataset. 2022

SUPPLEMENTARY MATERIAL OF THE ARTICLE MOLECULAR ENGINEERING TO INTRODUCE CARBONYL BETWEEN NICKEL SALOPHEN ACTIVE SITES TO ENHANCE ELECTROCHEMICAL CO2 REDUCTION TO METHANOL

  • Liang, Zhifu
  • Wang, Jianghao
  • Tang, Peng-Yi
  • Tang, Weiqiang
  • Liu, Lijia
  • Shakouri, Mohsen
  • Wang, Xiang
  • Llorca, Jordi
  • Zhao, Shuangliang
  • Heggen, Marc
  • Dunin-Borkowski, Rafal E.
  • Cabot, Andreu
  • Wu, Hao Bin
  • Arbiol, Jordi
19 pages. -- Figure S1. Synthesis scheme of Ni-2D-SA. -- Figure S2. PXRD patterns of Ni-2D-SA (black) and Ni-2D-O-SA (red). -- Figure S3. FT-IR spectra of Ni-2D-SA and Ni-2D-O-SA. -- Figure S4. chemical shift of 13C SSNMR spectra of Ni-2D-SA and Ni-2D-O-SA. -- Figure S5 SEM images of: (a) Ni-2D-O-SA, (b) Ni-2D-O-SA-CNT, (c) Ni-2D-SA-CNT. -- Figure S6. (a)-(c) HAADF-STEM images of Ni-2D-O-SA displaying the presence of atomically dispersed nickel atoms. (d) HAADF-STEM image and EDS mapping. -- Figure S7. Fourier transformed Ni K-edge EXAFS spectra of Ni-SA plotted in R-space, Fourier transformed EXAFS spectra in R-space of Ni-SA and fitted curve. -- Table S1. The Ni K-edge EXAFS fitting parameters of Ni-SA. R:bond length, CN: coordination number. -- Figure S8. Fourier transformed Ni K-edge EXAFS spectra of Ni-2D-SA plotted in R-space, Fourier transformed EXAFS spectra in R-space of Ni-SA and fitted curve. -- Table S2. The Ni K-edge EXAFS fitting parameters of Ni-2D-SA. -- Table S3. The Ni K-edge EXAFS fitting parameters of Ni-2D-O-SA. -- Figure S9. Fourier transformed Ni K-edge EXAFS spectra of Ni-2D-O-SA after immersed in KHCO3 for three days plotted in R-space, Fourier transformed EXAFS spectra in R-space of Ni-SA and fitted curve. -- Table S4. The Ni K-edge EXAFS fitting parameters of Ni-2D-O-SA-KHCO3. -- Figure S10. Pore size distribution of Ni-2D-SA and Ni-2D-O-SA powder, respectively. -- Figure S11. PXRD of Ni-2D-SA-CNT, Ni-2D-O-SA-CNT and CNT. -- Figure S12. HAADF-STEM image and EDS elemental mapping for Ni-2D-O-SA-CNT. -- Figure S13. Left panel: i-t curve on Ni-2D-O-SA-CNT at -0.9 V vs. RHE for 1h Right panel: Calibration curves for methanol (0.2 mM DMSO as internal standard). -- Figure S14. NMR spectrum of the catholyte after 1 hour of CO2 reduction on Ni-2D-O-SA-CNT. -- Figure S15. (a and b) Current densities of CO2RR for Ni-2D-O-SA-CNT and Ni-2D-SA-CNT at various potentials. (c and d) Product distribution of CO2RR for Ni-2D-O-SA-CNT and Ni-2D-SA-CNT at various potentials. -- Figure S16. (a,c) CV curves on Ni-2D-O-SA-CNT and Ni-2D-SA-CNT with different scan rates (5, 10, 20, 50, 100 mV s-1). (b, d) Current at open circuit potential (OCP) versus scan rates of different samples. The electrode area is 1 cm-2. -- Figure S17. Product distribution for Ni-2D-O-SA-CNT under Ar-saturated 0.1 M KHCO3 electrolyte at various potentials. -- Figure S18. NMR spectrum of the catholyte after 1 hour of CO2 reduction on Ni-2D-O-SA-CNT. -- Figure S19. NMR spectrum of the catholyte after 1 hour of electro-reduction under Ar environment on Ni-2D-O-SA-CNT. -- Figure S21. XPS spectra of Ni-2D-O-SA-CNT on carbon paper before and after 1 and 5 hours of CO2RR test. -- Figure S22. Product distribution of CO2RR for 2D-O-SA-CNT (without nickel) at various potential. -- Figure S23. Free-energy profiles of hydrogen evolution reaction (HER) on selected segments of Ni-2D-SA and Ni-2D-O-SA, respectively. -- Figure S24. The adsorption energy for intermediates (from CO to methanol) on selected segments of Ni-2D-SA and Ni-2D-O-SA, respectively. -- Figure S25. Free energy diagram of CO2 to CH3OH on selected segments of Ni-2D-O-SA. -- Table S5. Performance comparison of our catalysts and previous reported molecular based electrocatalysts for conversion of CO2 to methanol., ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/330231
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330231
HANDLE: http://hdl.handle.net/10261/330231
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330231
PMID: http://hdl.handle.net/10261/330231
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330231
Ver en: http://hdl.handle.net/10261/330231
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330231

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330632
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. FUNCT. MATER., DOI: 10.1002/ADFM.202111446 SITE-SPECIFIC AXIAL OXYGEN COORDINATED FEN4 ACTIVE SITES FOR HIGHLY SELECTIVE ELECTROREDUCTION OF CARBON DIOXIDE

  • Zhang, Ting
  • Han, Xu
  • Biset-Peiró, Martí
  • Li, Jian
  • Zhang, Xuan
  • Tang, Peng-Yi
  • Yang, Bo
  • Zheng, Lirong
  • Morante, Javier
  • Arbiol, Jordi
26 pages. -- PDF file includes: Materials and methods; XAFS Measurements; XAFS Analysis and Results; Synthesis Methods: Preparation of IRMOF-3; Preparation of ZIF-8; Preparation of Fe-IRMOF-3 and Fe-ZIF-8; Preparation of Disperse Fe-N-C (denoted as O-Fe-N-C and Fe-N-C); Preparation of O-Fe-N-C-Acid; Ink Preparation; Electrochemical Measurement; Calculation Method; DFT Calculations. -- Figures and tables., ICN2 acknowledges funding from Generalitat de Catalunya 2017 SGR 327.ICN2 was supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706)., Peer reviewed

DOI: http://hdl.handle.net/10261/330632
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330632
HANDLE: http://hdl.handle.net/10261/330632
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330632
PMID: http://hdl.handle.net/10261/330632
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330632
Ver en: http://hdl.handle.net/10261/330632
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330632

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330641
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. MATER., DOI: 10.1002/ADMA.202108835 A HIGH CONDUCTIVITY 1D Π–D CONJUGATED METAL–ORGANIC FRAMEWORK WITH EFFICIENT POLYSULFIDE TRAPPING-DIFFUSIONCATALYSIS IN LITHIUM–SULFUR BATTERIES

  • Yang, Dawei
  • Liang, Zhifu
  • Tang, Peng-Yi
  • Zhang, Chaoqi
  • Tang, Mingxue
  • Li, Qizhen
  • Jacas Biendicho, Jordi
  • Li, Junshan
  • Heggen, Marc
  • Dunin-Borkowski, Rafal E.
  • Xu, Ming
  • Llorca, Jordi
  • Arbiol, Jordi
  • Morante, Joan Ramón
  • Chou, Shu-Lei
  • Cabot, Andreu
22 pages. -- PDF file includes: Experimental Procedures; DFT calculations. -- Figure S1. (a,b) SEM image and EDX spectrum of Ni-MOF-1D sample. (c) High magnification STEM-HAADF image and EDX elemental mapping showing the elemental distribution in a Ni-MOF-1D sample. (d) XRD pattern of Ni-MOF-1D. -- Figure S2. High magnification HAADF-STEM images and detailed STEM-EDX elemental maps of a Ni-MOF 1D catalyst. -- Figure S3. iDPC-STEM images of Ni-MOF-1D with different magnifications. -- Figure S4. (a) XPS survey spectrum of Ni-MOF-1D. (b-d) High resolution XPS spectra of b) C 1s, c) N 1s, and d) Ni 2p. -- Table S1 Detailed EXAFS fitting model and parameters of Ni-MOF-1D. -- Figure S5. Wavelet transform (WT) analysis of (a) Ni-MOF-1D, (b) Ni foil, and (c) NiO. -- Figure S6. 1H NMR spectra of the obtained sample of Ni-MOF-1D. -- Figure S7. (a) Projected integral of the charge density in the non-periodic direction. (b) Projected integral of the charge density in the periodic direction of Ni-MOF-1D. -- Figure S8. Calculated electron localization function (ELF) of Ni-MOF-1D. -- Figure S9. (a) SEM-EDX compositional maps and (b) EDX spectra of S@Ni-MOF-1D. (c) XRD pattern of S@Ni-MOF-1D. (d) TGA profile from S@Ni-MOF-1D measured in N2 atmosphere. (e) N2 adsorption-desorption isotherms of Ni-MOF-1D and S@Ni-MOF-1D. Inset: Pore size distribution of Ni-MOF-1D and S@Ni-MOF-1D. -- Figure S10. Electrical conductivity of the two hosts tested before and after fusion with sulfur. -- Figure S11. Binding energies and adsorbed structures of LiPS on the surface of carbon calculated by DFT. -- Figure S12. Binding energies and adsorbed structures of LiPS on the surface of Ni-MOF-1D calculated by DFT. -- Figure S13. The optimized adsorption configuration of Li2S decomposition on carbon. -- Figure S14. The optimized adsorption configuration of Li2S decomposition on Ni-MOF-1D. -- Figure S15. (a) CV curve of Ni-MOF-1D as electrode measured in symmetric coin cell configuration using an electrolyte containing 1 mol L−1 LiTFSI dissolved in DOL/DME (v/v =1/1). (b) CV curves of symmetric cells from 1 to 50 cycles. (c) CV profiles of Ni-MOF-1D electrodes in symmetric cells at scan rate from 2 mV s-1 to 20 mV s-1. -- Figure S16. EIS spectra of symmetrical cells with different host materials, Ni-MOF-1D (a) and Super P (b), using an electrolyte containing 0.5 mol L-1 Li2S 6 and 1 mol L-1 LiTFSI dissolved in DOL/DME (v/v = 1/1). -- Figure S17. Onset potential for Li–S redox reactions. -- Figure S18. CV curves of S@Super P at different scan rates. -- Figure S19. First four cycles of CV curves of (a) S@Ni-MOF-1D, and (b) S@Super P performed at a scan rate of 0.1 mV s−1. -- Figure S20. Plots of CV peak current. -- Figure S21. Charge profiles of S@Ni-MOF-1D, and S@Super P electrodes showing the overpotentials for conversion between soluble LiPS and insoluble Li2S2/Li2S. --Figure S22. (a) Galvanostatic charge/discharge profiles of S@Super P electrodes at different current densities range from 0.1 C to 3 C. (b) EIS spectra of S@Super P coin cells before and after cycling. -- Figure S23. High-loading cycling performances with sulfur loadings of 7.6 mg cm-2 at 0.5 C of S@Ni-MOF-1D electrodes. -- Figure S24. (a) Galvanostatic charge/discharge profiles of S@Ni-MOF-1D at various current rates with a high sulfur loading of 4.3 mg cm−2. (b) Rate capability of S@Ni-MOF-1D cathodes loaded with 4.3 mg cm−2 of sulfur at various C rates. -- Figure S25. (a) TGA curve of a S@Ni-MOF-1D composite with a higher sulfur loading. (b) Cycling stability and Coulombic efficiency of the S@Ni-MOF-1D cathode with a higher sulfur loading at 1 C for 250 cycles. -- Table S2 Summary of recent reports on MOF-based sulfur host cathodes for LSBs., ICN2 acknowledges the support from the Severo Ochoa Programme (MINECO, Grant no. SEV-2017-0706). IREC and ICN2 are both funded by the CERCA Programme/Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/330641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330641
HANDLE: http://hdl.handle.net/10261/330641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330641
PMID: http://hdl.handle.net/10261/330641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330641
Ver en: http://hdl.handle.net/10261/330641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330641

Buscador avanzado