Resultados totales (Incluyendo duplicados): 69
Encontrada(s) 7 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332071
Dataset. 2022

SUPPORTING INFORMATION PD2GA NANORODS AS HIGHLY ACTIVE BIFUNCTIONAL CATALYSTS FOR ELECTROSYNTHESIS OF ACETIC ACID COUPLED WITH HYDROGEN PRODUCTION

  • Wang, Qiuxia
  • Liu, Junfeng
  • Li, Tong
  • Zhang, Ting
  • Arbiol, Jordi
  • Yan, Suxia
  • Wang, Yong
  • Li, Huaming
  • Cabot, Andreu
11 pages. -- Fig. S1. Extra structure characterization of the Pd2Ga NRs. (a,b) HRTEMmicrographand the corresponding indexed power spectrum observed along the corresponding[001] (a) and [342] (b) zone axis of the orthorhombic Pnma Pd2Ga structure. (c) STEM-EELS elemental composition maps. -- Fig. S2. XRD pattern of as-synthesized Pd2Ga using 0.2 mmol of Pd(acac)2 and0.1mmol of Ga(acac)3 in the reaction. -- Fig. S3. SEM-EDS spectrum of Pd2Ga NRs. -- Fig. S4. (a-c) CV curves of Pd2Ga/C (a), Pd/C (b) and Pt/C (c) catalysts in 0.5MKOH with a scan rate of 20, 40, 60, 80 and 100 mV s-1. (d) Linear fit of the current density at 0.156 V as a function of scan rate from 20 to 100 mV s-1. -- Fig. S5. Nyquist plots of the catalysts at 0.8 V vs. RHE in 0.5 MKOHwith 0.5Methanol solution. -- Fig. S6. Comparison of the specific and mass activity of Pd2Ga/C, Pd/Cand Pt/Ccatalysts after 12 h CA measurements. -- Fig. S7. EOR CA curves of Pd2Ga catalyst reactivated by cycling every 1000 s inathree-electrode system with 0.5 M KOH and 0.5 M ethanol as electrolyte. -- Fig. S8. (a) 1H NMR analysis of the electrolyte before and after CA measurement. (b) 1H NMR analysis of acetic acid added in KOH and KOH + ethanol solution. -- Fig. S9. Potential-time curves of the Pd2Ga/C catalyst at current densities of 10mAcm-2 in 0.5 M KOH with ethanol solution. -- Fig. S10. Comparison of the current density of Pd2Ga/C, Pd/C and Pt/C catalysts after 15 h CA measurements in the two-electrode coupled system. -- Fig. S11. XRD Pattern (a) and TEM images of Pd2Ga/C in cathode (b) and anode (c) of the two-electrode electrolyzer after long-term stability measurement. -- Fig. S12. crystal structural models of Pd (111) and Pd2Ga (211). -- Fig. S13. DFT calculated models of Pd (a) and Pd2Ga (b) active sites with adsorbedreactive species from different EOR reaction states. -- Fig. S14. (a) CV curves of the catalysts in 0.5 M H2SO4 with 0.5 Methanol solution. (b) Polarization curves of catalysts in 0.5 M H2SO4 with 0.5 Methanol solution. (c) LSV curves of the assembled cells in 0.5 M H2SO4 with 0.5 Methanol solution. (d) CA measurements of the assembled cells at 1.0 V in 0.5 M H2SO4 with 0.5 Methanol solution. -- Fig. S15. DFT calculated models of OH- adsorbed on different sites of Pd2Ga (211) surface. -- Table S1. Comparison of specific activity, mass activity and stability of Pd- or Pt-based catalysts for EOR in alkaline media., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/332071
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332071
HANDLE: http://hdl.handle.net/10261/332071
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332071
PMID: http://hdl.handle.net/10261/332071
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332071
Ver en: http://hdl.handle.net/10261/332071
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332071

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332073
Dataset. 2022

SUPPORTING INFORMATION ROOM TEMPERATURE AQUEOUS-BASED SYNTHESIS OF COPPER-DOPED LEAD SULFIDE NANOPARTICLES FOR THERMOELECTRIC APPLICATIONS

  • Li, Mengyao
  • Liu, Yu
  • Zhang, Yu
  • Chang, Cheng
  • Zhang, Ting
  • Yang, Dawei
  • Xiao, Ke
  • Arbiol, Jordi
  • Ibáñez, María
  • Cabot, Andreu
6 pages. -- Figure S1. Pb 4f and S 2p high resolution XPS spectra obtained from the PbS nanoparticles. -- Figure S2. XRD patterns of PbS nanoparticles with and without H2-reducing treatment. -- Figure S3. SEM images and EDX spectra of a) PbS nanoparticles and b) PbS powders after annealing at 600℃ for 3h with H2/Ar atmosphere. -- Figure S4. Histograms of the grain size distribution obtained from the cross section SEM image of the a) PbS pellet without reduction process, and b) PbS pellet with reduction process. SEM images are shown in Figure 3. -- Figure S5. XRD patterns of the Pb1-xCuxS a) nanoparticles and b) annealed powder. -- Figure S6. a) XRD patterns of the SPS sintered Pb1-xCuxS pellets; b) Expanded view of the regions corresponding to the PbS (200) diffraction peak. -- Figure S7. The function of the Cu concentration on the lattice parameters of the Pb1-xCuxS pellets: a) Lattice parameter a=b=c (Å); b) Volume of Cell (Å 3). -- Figure S8. Cross-section SEM image and EDX compositional maps of a Pb0.955Cu0.045S pellet. -- Figure S9. EELS chemical composition maps obtained from the red squared area of the STEM micrograph of the Pb0.955Cu0.045S pellet. -- Table S1. Pb1-xCuxS nanoparticle composition as measured by SEM-EDX and crystal domain size as obtained from XRD data using Scherrer equation. -- Table S2. Hall charge carrier concentration (n), mobility () and effective mass (m*) of Pb1- xCuxS pellets at room temperature., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/332073
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332073
HANDLE: http://hdl.handle.net/10261/332073
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332073
PMID: http://hdl.handle.net/10261/332073
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332073
Ver en: http://hdl.handle.net/10261/332073
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332073

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332343
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. FUNCT. MATER., DOI: 10.1002/ADFM.202200529 ENHANCED POLYSULFIDE CONVERSION WITH HIGHLY CONDUCTIVE AND ELECTROCATALYTIC IODINE-DOPED BISMUTH SELENIDE NANOSHEETS IN LITHIUM–SULFUR BATTERIES

  • Li, Mengyao
  • Yang, Dawei
  • Jacas Biendicho, Jordi
  • Han, Xu
  • Zhang, Chaoqi
  • Liu, Kun
  • Diao, Jiefeng
  • Li, Junshan
  • Wang, Jing
  • Heggen, Marc
  • Dunin-Borkowski, Rafal E.
  • Wang, Jiaao
  • Henkelman, Graeme
  • Morante, Joan Ramón
  • Arbiol, Jordi
  • Chou, Shu-Lei
  • Cabot, Andreu
14 pages. -- PDF file includes: Details of Theoretical calculations. -- Figure S1. (a) SEM images of the Bi2Se3 nanosheets. (b) XRD patterns of Bi2Se3 nanosheets. (c) HRTEM images of the Bi2Se3 nanosheets and its corresponding power spectrum. (d) EELS chemical composition maps obtained from the red squared area of the STEM micrograph. -- Figure S2. Bi 4f and Se 3d high-resolution XPS spectra. -- Figure S3. XRD pattern of I-Bi2Se3/S. -- Figure S4. TGA curve of I-Bi2Se3/S composite measured in N2 with a sulfur loading ratio of 70.2 wt%. -- Figure S5. Nitrogen adsorption-desorption isotherms of as synthesized I-Bi2Se3 and IBi2Se3/S composites. -- Figure S6. DFT calculation results of optimized geometrical configurations of the surface (110) of Bi2Se3 with LiPS (Li2S, Li2S2, Li2S4, Li2S6, Li2S8 and S8). -- Figure S7. DFT calculation results of optimized geometrical configurations of the surface (110) of I-Bi2Se3 with LiPS (Li2S, Li2S2, Li2S4, Li2S6, Li2S8 and S8). -- Figure S8. Optimized adsorption configuration of Li2S decomposition on Bi2Se3. -- Figure S9. First five cycles of CV curves of (a) I-Bi2Se3/S, (b) Bi2Se3/S and (c) Super P/S performed at a scan rate of 0.1 mV s−1. -- Figure S10. Differential CV curves of (a) I-Bi2Se3/S, (c) Bi2Se3/S and (e) Super P/S. The baseline voltage and current density are defined as the value before the redox peak, where the variation on current density is the smallest, named as dI/dV=0. -- Figure S11. CV curves of (a) Bi2Se3/S, (b) Super P/S and (c) Plot of CV peak current for peaks C1, C2, and A versus the square root of the scan rates. -- Figure S12. The CV curve of I-Bi2Se3 as electrode measured in symmetric coin cell using an electrolyte without Li2S6. -- Figure S13. (a) Charge, and (b) discharge profiles of I-Bi2Se3/S, Bi2Se3/S, and Super P/S electrodes showing the overpotentials for conversion between soluble LiPS and insoluble Li2S2/Li2S. -- Figure S14. Galvanostatic charge−discharge profiles of (a) Bi2Se3/S and (b) Super P/S at different current densities range from 0.1C to 4C. -- Figure S15. (a,b) EIS spectra of (a) Bi2Se3/S and (b) Super P/S coin cells before and after cycling. The solid line corresponding to the fitting result from the equivalent circuit (c) and (d), and the Rs, Rin, Rct, and Zw stand for the resistance of the electrolyte, insoluble Li2S2/Li2S layer, interfacial charge-transportation, and semi-infinite Warburg diffusion, respectively; and CPE stands for the corresponding capacitance. (e) Different resistances of three coin cells were obtained from the equivalent circuit. -- Figure S16. XRD patterns of electrode materials after 100 cycles at 1C. -- Figure S17. Galvanostatic charge/discharge profiles of I-Bi2Se3/S at 0.5C under a lean electrolyte condition with a high sulfur loading of 5.2 mg cm-2. -- Figure S18. (a) SEM image of the Li-anode after cycling; (b) EDX mapping image of Lianode showing sulfur signal after cycling. -- Figure S19. SEM image of the cathode material after cycling, EDX spectra and EDX elemental maps for S, Se, Bi and I. -- Figure S20. I-Bi2Se3 optimized configuration as calculated by DFT. The distance between I and Bi is 3.15 Å, which is similar values than the bond lengths in bulk BiI3. -- Table S1 Summary of the comparison of I-Bi2Se3 electrochemical performance as host cathode for LSBs with state-of-the-art Bi-based or Se-based materials., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/332343
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332343
HANDLE: http://hdl.handle.net/10261/332343
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332343
PMID: http://hdl.handle.net/10261/332343
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332343
Ver en: http://hdl.handle.net/10261/332343
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332343

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336104
Dataset. 2023

SUPPORTING INFORMATION A CRMNFECONI HIGH ENTROPY ALLOY BOOSTING OXYGEN EVOLUTION/REDUCTION REACTIONS AND ZINC-AIR BATTERY PERFORMANCE

  • He, Ren
  • Yang, Linlin
  • Zhang, Yu
  • Wang, Xiang
  • Lee, Seung-Ho
  • Zhang, Ting
  • Li, Lingxiao
  • Liang, Zhifu
  • Chen, Jingwei
  • Li, Junshan
  • Ostovari Moghaddam, Ahmad
  • Llorca, Jordi
  • Ibáñez, María
  • Arbiol, Jordi
  • Xu, Ying
  • Cabot, Andreu
30 pages. -- PDF includes: Characterization. -- Density functional theory (DFT) calculations. -- Computational property description. -- Fig. S1. EDS composition of the ternary alloys: FeCoNi, MnFeNi, MnCoNi, and MnFeCo. -- Fig. S2. XRD pattern of the ternary alloys: FeCoNi, MnFeNi, MnCoNi, and MnFeCo. -- Fig. S3. (a) ICP-OES composition, (b) XRD pattern, (c) TEM image, and (d) HRTEM images of a MnFeCoNi quaternary alloy. -- Fig. S4. (a) ICP-OES composition, (b) XRD pattern, (c) TEM image and EDS chemical composition maps, and (d) HRTEM images of a CuMnFeCoNi HEA. -- Fig. S5. Slices of electron density difference of CrMnFeCoNi in (a) side view, (b) front view, and (c) top view. The contour around the atoms represents electron accumulation (red) or electron depletion (blue). -- Fig. S6. Slices of electron density difference of CuMnFeCoNi in (a) side view, (b) front view, and (c) top view. The contour around the atoms represents electron accumulation (red) or electron depletion (blue). -- Fig. S7. OER performance of the ternary alloys. (a) LSV curves, (b) corresponding overpotential at 10 mA/cm2, (c) corresponding Tafel plots, and (d) EIS spectra. -- Fig. S8. (a-g) CV curves with different scan rates of different HEA, quaternary alloy, and ternary alloys in 1.0 M KOH showing the double layer capacitance without electrochemical reactions. (h) Current density at 0.961V vs. RHE plotted against the scan rate and fitted to a linear region to estimate the capacitance. -- Fig. S9. ICP-OES composition of a CrMnFeCoNi HEA after stability test. -- Fig. S10. XRD pattern of CrMnFeCoNi before and after OER stability measurements. -- Fig. S11. HRTEM image of CrMnFeCoNi after OER measurements. -- Fig. S12. In situ Raman spectra of CrMnFeCoNi during OER measurements. -- Fig. S13. High-resolution XPS spectra of CrMnFeCoNi HEA after OER stability measurements. -- Fig. S14. H2O2 yield vs. potential from MnFeCoNi, CrMnFeCoNi, CuMnFeCoNi, and Pt/C. -- Fig. S15. Relaxed atomic configuration of the four fundamental steps of OER/ORR for the MnFeCoNi structure. -- Fig. S16. Relaxed atomic configuration of the four fundamental steps of OER/ORR for the CuMnFeCoNi structure. -- Fig. S17. Galvanostatic discharge-charge curves with 10 min discharge and 10 min charge cycles at a current density of 5 mA/cm2. -- Fig. S18. Galvanostatic discharge-charge curves with 10 min discharge and 10 min charge cycles at a current density of 12 mA/cm2. -- Table S1. Atomic radius and electronegativity of different elements. -- Table S2. Mn 2p, Fe 2p, Co 2p and Ni 2p XPS binding energies of MnFeCoNi, CrMnFeCoNi, and CuMnFeCoNi. -- Table S3. Comparison of the OER performance of the CrMnFeCoNi HEA with recently reported high entropy alloy catalysts. -- Table S4. ICP-OES results of the amount of metallic elements in the electrolyte after long-term tests. -- Table S5. Comparison of the bifunctional activities of various state-of-the-art electrocatalysts for OER and ORR. -- Table S6. Comparison of the ZAB performances obtained using state-of-the-art air cathodes, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/336104
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336104
HANDLE: http://hdl.handle.net/10261/336104
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336104
PMID: http://hdl.handle.net/10261/336104
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336104
Ver en: http://hdl.handle.net/10261/336104
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336104

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336522
Dataset. 2023

SUPPLEMENTARY MATERIAL CONSTRUCTING AN ACTIVE AND STABLE OXYGEN ELECTRODE SURFACE FOR REVERSIBLE PROTONIC CERAMIC ELECTROCHEMICAL CELLS

  • Pei, Kai
  • Luo, Shunrui
  • He, Fan
  • Arbiol, Jordi
  • Xu, Yangsen
  • Zhu, Feng
  • Wang, Yakun
  • Chen, Yu
34 pages. -- PDF includes supplementary figures: Figure S1. Rp of PCO infiltrated PBC oxygen electrode symmetrical cells with different mass per unit area infiltration and firing temperature, tested at a temperature of 700 to 500 oC. -- Figure S2. Short stability of Rp of BZCYYb symmetrical cells with bare PBC and PCO infiltrated PBC oxygen electrode with different infiltration mass per unit area and firing temperature, tested at 650 oC under flowing air with 3 vol.% H2O. -- Figure S3. the detailed SEM image of PCO catalyst on PBC oxygen electrode bone fired at (a) 800 °C (b) 900 °C and (c) 1000 °C for 2h. -- Figure S4. Short stability of Rp of BZCYYb symmetrical cells with (a) pure CeO2-δ, (b) Pr0.2Ce0.8O2-δ, and (c) Pr0.1Ce0.9O2-δ infiltrated PBC oxygen electrode with 15mg/cm2 and 900oC firing temperature, tested at 650 oC under flowing air with 3 vol.% H2O; (d) Comparison of Rp changes with time after infiltration of three catalysts. -- Figure S5. XRD patterns of BZCYYb electrolyte, PBC oxygen electrode, and chemical compatibility results of PBC-BZCYYb powder. -- Figure S6. In situ XRD patterns of PBC (a) and PCO-PBC (b) powders in wet air (3% H2O) at 650 oC for 6 h. -- Figure S7. EIS of symmetrical cells with oxygen electrode of bare PBC (a) and PCO-PBC (b) at different oxygen partial pressure of 0.1-1.0 at 650 oC under open-circuit voltage condition. -- Figure S8. Effects of water partial pressure (pH2O) on the DRT functions of Bare PBC. -- Figure S9. Electrochemical behaviors evolution of single cells under a different partial pressure of water. -- Figure S10. EIS curves (a) and (b) Typical IVP curves of BZCYYb single cell with a bare PBC oxygen electrode measured from 700 to 600 oC, using 3 vol.% humidified H2 as fuel, and ambient air as oxidant. -- Figure S11. Performance evaluation of single cells under ambient air. -- Figure S12. Thermalgravimetric analyses of PBC and PCO-PBC in the air from RT to 900 oC. -- Figure S13. Detailed SEM image of bare PBC oxygen electrode. -- Figure S14. TEM micrograph (a) and EDX element mapping (b) of PBC grains treated under 3 vol.% H2O at 650 oC after 100 h. -- Figure S15. EDX element mapping and HAADF of initial PBC and initial PCO-PBC. -- Figure S16. XPS profiles of Co 2p and Ba 3d in the initial PBC (a), PCO-PBC (c), and the ones after being treated with H2O for 100 h (b) and (d), respectively. -- Figure S17. Typical I-V curves of the R-PCECs were measured before and after the test (~100 hours) at 650 oC in the humid air. -- Figure S18. Stability of the single cell with a PCO-PBC air electrode, tested in EL mode under different current densities of 0.50, 0.75, and 1.00 A cm-2 at 650 oC for 20 h. -- Table S1. The activation energy of PCO infiltrated PBC oxygen electrode symmetrical cells with different mass per unit area infiltration and firing temperature. -- Table S2. Comparison between the experimental and the theoretical bulk plane spacing distances and angles between planes. -- Table S3. Comparison between the experimental and the theoretical bulk plane spacing distances and angles between planes. -- Table S4. Comparison between the experimental and the theoretical bulk plane spacing distances and angles between planes. -- Table S5. Comparison between the experimental and the theoretical bulk plane spacing distances and angles between planes. -- Table S6. The relationship between elementary reaction and n. -- Table S7. The rate-determining steps for both PBC and PCO-PBC oxygen electrodes. -- Table S8. Performance comparison of our cells and other high-performance cells reported recently. -- Table S9. Performance comparison of our cell and other cells reported by others, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/336522
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336522
HANDLE: http://hdl.handle.net/10261/336522
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336522
PMID: http://hdl.handle.net/10261/336522
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336522
Ver en: http://hdl.handle.net/10261/336522
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336522

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337055
Dataset. 2023

SUPPLEMENTARY INFORMATION: HARD SUPERCONDUCTING GAP IN GERMANIUM

  • Tosato, Alberto
  • Levajac, Vukan
  • Wang, Ji Yin
  • Boor, Casper J.
  • Borsoi, Francesco
  • Botifoll, Marc
  • Borja, Carla
  • Martí-Sànchez, Sara
  • Arbiol, Jordi
  • Sammak, Amir
  • Veldhorst, Menno
  • Scappucci, Giordano
9 pages. -- Contents: Supplementary Note 1: Two-dimensional hole gas properties. -- Supplementary Note 2: PtSiGe properties. -- Supplementary Note 3: SNS-QPC measurements. -- Supplementary Note 4: NS-QPC measurements. -- Supplementary Note 5: SQUID measurements. -- Supplementary Note 6: 1D array. -- Supplementary Note 7: Key metrics, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337055
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337055
HANDLE: http://hdl.handle.net/10261/337055
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337055
PMID: http://hdl.handle.net/10261/337055
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337055
Ver en: http://hdl.handle.net/10261/337055
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337055

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337061
Dataset. 2022

DATA & ANALYSIS UNDERLYING THE PUBLICATION: HARD SUPERCONDUCTING GAP IN A HIGH-MOBILITY SEMICONDUCTOR

  • Tosato, Alberto
  • Levajac, Vukan
  • Wang, Ji Yin
  • Boor, Casper J.
  • Borsoi, Francesco
  • Botifoll, Marc
  • Borja, Carla
  • Martí-Sànchez, Sara
  • Arbiol, Jordi
  • Sammak, Amir
  • Veldhorst, Menno
  • Scappucci, Giordano
The raw data are organized in folders based on the kind of device presented in the paper. The Juppyter notebooks contain the code for analyzing and plotting the data, there is one notebook for each figure of the papaer and supplementary. The scripts used to import the datasets of different kinds are contained in util_scripts, along with some other useful functions for plotting and formatting., Fig2 - SNS.ipynb, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337061
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337061
HANDLE: http://hdl.handle.net/10261/337061
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337061
PMID: http://hdl.handle.net/10261/337061
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337061
Ver en: http://hdl.handle.net/10261/337061
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337061

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337137
Dataset. 2023

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI) IN-SITU CONSTRUCTION OF GRAPHDIYNE BASED HETEROJUNCTIONS BY A DEPROTECTION- FREE APPROACH FOR PHOTOCATALYTIC HYDROGEN GENERATION

  • Wang, Cong
  • Han, Xu
  • Xu, Qian
  • Sun, Yi Ning
  • Arbiol, Jordi
  • Ghazzal, Mohamed Nawfal
  • Li, Jian
14 pages. -- Table of Contents: Experiment Procedures. -- Characterization. -- Photocatalytic H2 Evolution Test. -- Electrochemical characterizations. -- Supplementary Figures., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337137
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337137
HANDLE: http://hdl.handle.net/10261/337137
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337137
PMID: http://hdl.handle.net/10261/337137
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337137
Ver en: http://hdl.handle.net/10261/337137
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337137

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337257
Dataset. 2023

SUPPORTING INFORMATION PHOSPHOROUS INCORPORATION INTO PALLADIUM TIN NANOPARTICLES FOR THE ELECTROCATALYTIC FORMATE OXIDATION REACTION

  • Montaña-Mora, Guillem
  • Qi, Xueqiang
  • Wang, Xiang
  • Chacón-Borrero, Jesús
  • Martínez-Alanis, Paulina R.
  • Yu, Xiaoting
  • Li, Junshan
  • Xue, Qian
  • Arbiol, Jordi
  • Ibáñez, María
  • Cabot, Andreu
11 pages. -- Experimental and theoretical methods. -- Results., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337257
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337257
HANDLE: http://hdl.handle.net/10261/337257
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337257
PMID: http://hdl.handle.net/10261/337257
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337257
Ver en: http://hdl.handle.net/10261/337257
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337257

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337338
Dataset. 2023

SUPPLEMENTARY INFORMATION: REDUCING CHARGE NOISE IN QUANTUM DOTS BY USING THIN SILICON QUANTUM WELLS

  • Paquelet Wuetz, Brian
  • Degli Esposti, Davide
  • Zwerver, Anne-Marije J.
  • Amitonov, Sergey V.
  • Botifoll, Marc
  • Arbiol, Jordi
  • Sammak, Amir
  • Vandersypen, Lieven M. K.
  • Russ, Maximilian
  • Scappucci, Giordano
10 pages. -- Contents: Measurement of the thickness of the quantum wells. -- Charge noise measurements. -- Noise spectra for a quantum dot from heterostructure C 5. -- Frequency and gate voltage dependence of noise spectra. -- Operation gate voltages for charge sensor quantum dots. -- 6. Lever arm extraction. -- 7. Simulations of dephasing times and gate fidelities. -- Dephasing of charge qubit. -- Dephasing of spin qubit. -- Gate fidelity simulations. -- References, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337338
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337338
HANDLE: http://hdl.handle.net/10261/337338
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337338
PMID: http://hdl.handle.net/10261/337338
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337338
Ver en: http://hdl.handle.net/10261/337338
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337338

Buscador avanzado