Resultados totales (Incluyendo duplicados): 39
Encontrada(s) 4 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
Set de datos (Dataset). 2022

SUPPORTING INFORMATION 2D/2D HETEROJUNCTION OF TIO2 NANOSHEETS / ULTRATHIN G-C3N4 FOR EFFICIENT PHOTOCATALYTIC HYDROGEN EVOLUTION

  • Du, Ruifeng
  • Li, Baoying
  • Han, Xu
  • Xiao, Ke
  • Wang, Xiang
  • Zhang, Chaoqi
  • Arbiol, Jordi
  • Cabot, Andreu
10 pages. -- Figures and tables. -- Figure S1: SEM image of (a) bulk g-C3N4 and (b) ultrathin g-C3N4, (c) N2 adsorption-desorption isotherms of bCN and uCN. -- Figure S2: FTIR spectra of OAC, OLMA and TiO2 before and after ligands remove. -- Figure S3: Zeta potential distribution spectrum of TiO2 after ligands removal (a) and uCN (b). -- Figure S4: SEM image and EDS compositional maps of a T1/uCN1 composite. -- Figure S5: SEM image of T1/uCN2 and corresponding EDS spectrum. -- Figure S6: SEM image of T1/uCN2 and corresponding EDS spectrum. -- Figure S7: SEM image of T1/uCN2 and corresponding EDS spectrum; Figure S8: Chromatogram plots for 0.5 ml of standard hydrogen injected every half hour. -- Table S1: Gas Chromatography Peak Processing Data based on figure S8. -- Figure S9: Standard hydrogen curve for gas chromatography. -- Table S2: Exponential decay-fitted parameters of fluorescence lifetime of uCN, TiO2 and T1/uCN1. -- Figure S10: Photocatalytic hydrogen generation amount on bCN, TiO2 and T1/bCN1 during 4 h under simulated solar light irradiation; Table S3: Photocatalytic hydrogen production about TiO2/g-C3N4 based catalysts. -- Table S4: The AQE values with different incident light wavelengths for T1/uCN1. -- Figure S11: (a) Stability cycles of the T1/uCN1 for H2 evolution under simulated solar light irradiation; (b) TEM image of T1/uCN1 after 20 h photocatalytic H2 evolution reaction and (c) XRD pattern of T1/uCN1 before and after 20 h photocatalytic H2O2 evolution reaction., CN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCAProgramme / Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
HANDLE: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
PMID: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
Ver en: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329972
Set de datos (Dataset). 2022

SUPPLEMENTAL MATERIAL: DOUBLING THE MOBILITY OF INAS/INGAAS SELECTIVE AREA GROWN NANOWIRES

  • Beznasyuk, Daria V.
  • Martí-Sànchez, Sara
  • Kang, Jung-Hyun
  • Tanta, Rawa
  • Rajpalke, Mohana
  • Stankevič, Tomaš
  • Wulff, Anna Christensen
  • Spadaro, Maria Chiara
  • Bergamaschini, Roberto
  • Maka, Nikhil N.
  • Petersen, Christian Emanuel N.
  • Carrad, Damon J.
  • Jespersen, Thomas Sand
  • Arbiol, Jordi
  • Krogstrup, Peter
20 pages. -- PDF file includes S1. Substrate fabrication and growth details; S2. Degradation of surface topography after thermal oxide removal prior nanowire growth; S3. Faceting of GaAs(Sb) vs GaAs nanowires; S4. The role of InGaAs growth temperature; S5. The role of InAs growth temperature; S6. InAs/InGaAs field effect mobility measurements: influence of the InGaAs buffer growth temperature; S7. InAs/InGaAs band structure simulations; S8. Transport measurements of InGaAs/GaAs(Sb) SAG nanowires without the InAs channel; S9. InAs/InGaAs field effect mobility measurements: influence of the InAs growth temperature, figures and tables., ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/329972
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329972
HANDLE: http://hdl.handle.net/10261/329972
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329972
PMID: http://hdl.handle.net/10261/329972
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329972
Ver en: http://hdl.handle.net/10261/329972
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329972

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330227
Set de datos (Dataset). 2022

SUPPORTING INFORMATION MOF-DERIVED ULTRATHIN COBALT MOLYBDENUM PHOSPHIDE NANOSHEETS FOR EFFICIENT ELECTROCHEMICAL OVERALL WATER SPLITTING

  • Wang, Xiang
  • Yang, Linlin
  • Xing, Congcong
  • Han, Xu
  • Du, Ruifeng
  • He, Ren
  • Guardia, Pablo
  • Arbiol, Jordi
  • Cabot, Andreu
8 pages. -- Figure S1. SEM images of CoMoP. -- Figure S2. (a) SEM image of Co–Mo MOFs. (b–c) SEM images and (d) EDX spectrum of CoMoP. -- Figure S3. (a) SEM image of Na2MoO4-ZIF-67. (b–c) SEM images and (d) EDX spectrum Mo–CoP. -- Figure S4. (a) SEM image of ZIF-67. (b–c) SEM images and (d) EDX spectrum CoP. -- Figure S5. (a–d) TEM image of CoMoP. -- Figure S6. (a–d) HAADF-STEM micrographs of CoMoP. -- Figure S7. EELS chemical composition maps obtained from the red squared area of the STEM mi-crograph. Individual Co L2,3-edges at 779 eV (red), Mo M4,5-edges at 230 eV (green), P L2,3-edges at 132 eV (blue), N K-edge at 401 eV (pink) and C K-edge at 284 eV (orange). -- Figure S8. (a) OER and (b) HER polarization curves of CoMoP with different Mo content in 1.0 M KOH. -- Figure S9. Cyclic voltammograms for (a) CoMoP; (b) Mo–CoP; (c) CoP and (d) RuO2 in the non-faradaic region of 1.12–1.22 V vs. RHE at various scan rates. -- Figure S10. (a–c) SEM image and d) EDX spectrum of CoMoP after long term OER stability test-ing. -- Figure S11. (a–c) SEM image and d) EDX spectrum of CoMoP after long term HER stability test-ing. -- Table S1. Comparison of OER performance of CoMoP with some previously reported CoP-based catalysts in 1.0 M KOH solution. -- Table S2. Comparison of HER performance of CoMoP with some previously reported CoP-based catalysts in 1.0 M KOH solution. -- Table S3. Comparison of OWS performance of CoMoP with some previously reported CoP-based catalysts in 1.0 M KOH solution., ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/330227
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330227
HANDLE: http://hdl.handle.net/10261/330227
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330227
PMID: http://hdl.handle.net/10261/330227
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330227
Ver en: http://hdl.handle.net/10261/330227
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330227

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330231
Set de datos (Dataset). 2022

SUPPLEMENTARY MATERIAL OF THE ARTICLE MOLECULAR ENGINEERING TO INTRODUCE CARBONYL BETWEEN NICKEL SALOPHEN ACTIVE SITES TO ENHANCE ELECTROCHEMICAL CO2 REDUCTION TO METHANOL

  • Liang, Zhifu
  • Wang, Jianghao
  • Tang, Peng-Yi
  • Tang, Weiqiang
  • Liu, Lijia
  • Shakouri, Mohsen
  • Wang, Xiang
  • Llorca, Jordi
  • Zhao, Shuangliang
  • Heggen, Marc
  • Dunin-Borkowski, Rafal E.
  • Cabot, Andreu
  • Wu, Hao Bin
  • Arbiol, Jordi
19 pages. -- Figure S1. Synthesis scheme of Ni-2D-SA. -- Figure S2. PXRD patterns of Ni-2D-SA (black) and Ni-2D-O-SA (red). -- Figure S3. FT-IR spectra of Ni-2D-SA and Ni-2D-O-SA. -- Figure S4. chemical shift of 13C SSNMR spectra of Ni-2D-SA and Ni-2D-O-SA. -- Figure S5 SEM images of: (a) Ni-2D-O-SA, (b) Ni-2D-O-SA-CNT, (c) Ni-2D-SA-CNT. -- Figure S6. (a)-(c) HAADF-STEM images of Ni-2D-O-SA displaying the presence of atomically dispersed nickel atoms. (d) HAADF-STEM image and EDS mapping. -- Figure S7. Fourier transformed Ni K-edge EXAFS spectra of Ni-SA plotted in R-space, Fourier transformed EXAFS spectra in R-space of Ni-SA and fitted curve. -- Table S1. The Ni K-edge EXAFS fitting parameters of Ni-SA. R:bond length, CN: coordination number. -- Figure S8. Fourier transformed Ni K-edge EXAFS spectra of Ni-2D-SA plotted in R-space, Fourier transformed EXAFS spectra in R-space of Ni-SA and fitted curve. -- Table S2. The Ni K-edge EXAFS fitting parameters of Ni-2D-SA. -- Table S3. The Ni K-edge EXAFS fitting parameters of Ni-2D-O-SA. -- Figure S9. Fourier transformed Ni K-edge EXAFS spectra of Ni-2D-O-SA after immersed in KHCO3 for three days plotted in R-space, Fourier transformed EXAFS spectra in R-space of Ni-SA and fitted curve. -- Table S4. The Ni K-edge EXAFS fitting parameters of Ni-2D-O-SA-KHCO3. -- Figure S10. Pore size distribution of Ni-2D-SA and Ni-2D-O-SA powder, respectively. -- Figure S11. PXRD of Ni-2D-SA-CNT, Ni-2D-O-SA-CNT and CNT. -- Figure S12. HAADF-STEM image and EDS elemental mapping for Ni-2D-O-SA-CNT. -- Figure S13. Left panel: i-t curve on Ni-2D-O-SA-CNT at -0.9 V vs. RHE for 1h Right panel: Calibration curves for methanol (0.2 mM DMSO as internal standard). -- Figure S14. NMR spectrum of the catholyte after 1 hour of CO2 reduction on Ni-2D-O-SA-CNT. -- Figure S15. (a and b) Current densities of CO2RR for Ni-2D-O-SA-CNT and Ni-2D-SA-CNT at various potentials. (c and d) Product distribution of CO2RR for Ni-2D-O-SA-CNT and Ni-2D-SA-CNT at various potentials. -- Figure S16. (a,c) CV curves on Ni-2D-O-SA-CNT and Ni-2D-SA-CNT with different scan rates (5, 10, 20, 50, 100 mV s-1). (b, d) Current at open circuit potential (OCP) versus scan rates of different samples. The electrode area is 1 cm-2. -- Figure S17. Product distribution for Ni-2D-O-SA-CNT under Ar-saturated 0.1 M KHCO3 electrolyte at various potentials. -- Figure S18. NMR spectrum of the catholyte after 1 hour of CO2 reduction on Ni-2D-O-SA-CNT. -- Figure S19. NMR spectrum of the catholyte after 1 hour of electro-reduction under Ar environment on Ni-2D-O-SA-CNT. -- Figure S21. XPS spectra of Ni-2D-O-SA-CNT on carbon paper before and after 1 and 5 hours of CO2RR test. -- Figure S22. Product distribution of CO2RR for 2D-O-SA-CNT (without nickel) at various potential. -- Figure S23. Free-energy profiles of hydrogen evolution reaction (HER) on selected segments of Ni-2D-SA and Ni-2D-O-SA, respectively. -- Figure S24. The adsorption energy for intermediates (from CO to methanol) on selected segments of Ni-2D-SA and Ni-2D-O-SA, respectively. -- Figure S25. Free energy diagram of CO2 to CH3OH on selected segments of Ni-2D-O-SA. -- Table S5. Performance comparison of our catalysts and previous reported molecular based electrocatalysts for conversion of CO2 to methanol., ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme/Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/330231
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330231
HANDLE: http://hdl.handle.net/10261/330231
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330231
PMID: http://hdl.handle.net/10261/330231
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330231
Ver en: http://hdl.handle.net/10261/330231
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330231

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330632
Set de datos (Dataset). 2022

SUPPORTING INFORMATION FOR ADV. FUNCT. MATER., DOI: 10.1002/ADFM.202111446 SITE-SPECIFIC AXIAL OXYGEN COORDINATED FEN4 ACTIVE SITES FOR HIGHLY SELECTIVE ELECTROREDUCTION OF CARBON DIOXIDE

  • Zhang, Ting
  • Han, Xu
  • Biset-Peiró, Martí
  • Li, Jian
  • Zhang, Xuan
  • Tang, Peng-Yi
  • Yang, Bo
  • Zheng, Lirong
  • Morante, Javier
  • Arbiol, Jordi
26 pages. -- PDF file includes: Materials and methods; XAFS Measurements; XAFS Analysis and Results; Synthesis Methods: Preparation of IRMOF-3; Preparation of ZIF-8; Preparation of Fe-IRMOF-3 and Fe-ZIF-8; Preparation of Disperse Fe-N-C (denoted as O-Fe-N-C and Fe-N-C); Preparation of O-Fe-N-C-Acid; Ink Preparation; Electrochemical Measurement; Calculation Method; DFT Calculations. -- Figures and tables., ICN2 acknowledges funding from Generalitat de Catalunya 2017 SGR 327.ICN2 was supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706)., Peer reviewed

DOI: http://hdl.handle.net/10261/330632
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330632
HANDLE: http://hdl.handle.net/10261/330632
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330632
PMID: http://hdl.handle.net/10261/330632
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330632
Ver en: http://hdl.handle.net/10261/330632
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330632

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331565
Set de datos (Dataset). 2023

RAW DATA FOR MANUSCRIPT PUBLISHED AT NANOMATERIALS, ENTITLED: ASYMMETRICAL PLASMON DISTRIBUTION IN HYBRID AUAG HOLLOW/SOLID CODED NANOTUBES

  • Genç, Aziz
  • Arbiol, Jordi
.dm3 TEM, STEM and EELS raw data, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331565
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331565
HANDLE: http://hdl.handle.net/10261/331565
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331565
PMID: http://hdl.handle.net/10261/331565
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331565
Ver en: http://hdl.handle.net/10261/331565
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331565

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331695
Set de datos (Dataset). 2022

MBOTIFOLLMORAL / ZNTE-ZNSE_STRAIN_MODULATED_BG_MAPPING [DATASET]

  • Botifoll, Marc
  • Arbiol, Jordi
This repository contains all the data (both raw and processed) used in the research paper: Sub-nanometer mapping of strain-induced band structure variations in planar nanowire core-shell heterostructures. In addition, the repository contains all the necessary code for reproducing, from the very raw data, all the results displayed in the paper, towards the best sake of reproducibility. Each folder contains the data as a fragmented zip file. Extract all the files inside each folder at once and a single folder will be generated. While the process is greatly tailored to the presented system of study (ZnSe@ZnTe core-shell nanowires on Al2O3 substrate) and so is the code for achieving it, its core and guidance is perfectly applicable for any translational invariant nanostructure, as detailed in the paper., Band gap mapping data.zip, Strain analysis micrographs.zip, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331695
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331695
HANDLE: http://hdl.handle.net/10261/331695
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331695
PMID: http://hdl.handle.net/10261/331695
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331695
Ver en: http://hdl.handle.net/10261/331695
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331695

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331703
Set de datos (Dataset). 2022

SUPPLEMENTARY INFORMATION SUB-NANOMETER MAPPING OF STRAIN-INDUCED BAND STRUCTURE VARIATIONS IN PLANAR NANOWIRE CORE-SHELL HETEROSTRUCTURES

  • Martí-Sànchez, Sara
  • Botifoll, Marc
  • Oksenberg, Eitan
  • Koch, Christian
  • Borja, Carla
  • Spadaro, Maria Chiara
  • Giulio, Valerio di
  • Ramasse, Quentin M.
  • García de Abajo, F. Javier
  • Joselevich, Ernesto
  • Arbiol, Jordi
52 pages. -- Supplementary Note 1. Growth directions, plane interactions and associated mismatches. -- Supplementary Note 2. Intermediate cases (gradual bending). -- Supplementary Note 3. Strain tensor maps (𝜀ij). -- Supplementary Note 4. Atomic modelling on non-faceted cores. -- Supplementary Note 5. Additional details on strain relaxation mechanisms and shell rotation. -- Supplementary Note 6. Details on the Core-shell misfit dislocations. -- Supplementary Note 7. Simulations on VEEL spectra. -- Supplementary Note 8. Methodology for band gap mapping., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331703
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331703
HANDLE: http://hdl.handle.net/10261/331703
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331703
PMID: http://hdl.handle.net/10261/331703
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331703
Ver en: http://hdl.handle.net/10261/331703
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331703

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331796
Set de datos (Dataset). 2022

SUPPORTING INFORMATION FOR SMALL, DOI: 10.1002/SMLL.202103561 CRITICAL ROLE OF PHOSPHORUS IN HOLLOW STRUCTURES COBALTBASED PHOSPHIDES AS BIFUNCTIONAL CATALYSTS FOR WATER SPLITTING

  • Zhang, Wei
  • Han, Ning
  • Luo, Jiangshui
  • Han, Xu
  • Feng, Shihui
  • Guo, Wei
  • Xie, Sijie
  • Zhou, Zhenyu
  • Subramanian, Palaniappan
  • Wan, Kai
  • Arbiol, Jordi
  • Zhang, Chi
  • Liu, Shaomin
  • Xu, Maowen
  • Zhang, Xuan
  • Fransaer, Jan
62 pages. -- PDF file includes: 1. Experimental section. -- Figure S1. XRD patterns of pure ZIF-67 (a), Co(OH)2 (b) and Co3O4 (c). -- Figure S2. SEM images of Co3O4 single-shelled nanocages and EDS chemical mapping. -- Figure S3. SEM images of and EDS chemical mapping of CoP-HS (a); CoP2-HS (b); CoP3-HS (c). -- Figure S4. Nitrogen absorption–desorption isotherms and pore size distributions of three cobalt phosphides, CoP-HS (a); CoP2-HS (b); CoP3-HS (c). -- Figure S5. XPS spectra of the XPS full scan for CoP-HS, CoP2-HS and CoP3-HS. -- Figure S6. The CV curves of CoP-HS, CoP2-HS, and CoP3-HS obtained at the 1st (a), 3rd (b), 5th (c), and 10th (d) cycles at a scan rate of 10 mV/s in a 1.0 M KOH solution. -- Figure S7. The OER activities of CoP-HS, CoP2-HS and CoP3-HS were tested by both forward and reverse scan. -- Figure S8. (a) The CV of the CoPx. (b) The double layer capacitance (CDL) was determined as the half of the slope from the plot of the capacitive current vs. scan rate plot. -- Figure S9. Chronopotentiometry responses of activity stabilized CoPx in 1.0 M KOH in the catalytic turnover region. -- Figure S10. (a-c) OER LSV curves with (red) and without (blue) 100% iR drop correction. (d) Corresponding Tafel lines. -- Figure S11. SEM images of CoP-HS (a), CoP2-HS (b) and CoP3-HS (c) single-shelled nanocages after 100 h OER stability measurement. (d) The changed ratio of Co:P before and after stability test. -- Figure S12.SEM of post-OER CoP (a) before HCl wash, (b) after HCl washed. -- Figure S13. The LSV curves of CoP-HS, CoP2-HS, CoP3-HS, Co3O4-HS and Co(OH)2-HS measured in 1.0 M KOH solution toward OER at a scan rate 10 mV/s after activation by 50 CV cycles between 0.0 V and 0.85 V (vs. Hg/HgO) at a scan rate 50 mV/s. -- Figure S14. (a) The LSV curves of carbon paper measured in 1.0 M KOH toward HER at scan rate 10 mV/s. (b) The data of CoP-HS, CoP2-HS and CoP3-HS test in 1.0 M KOH. -- Figure S15. Chronopotentiometry responses of activity stabilized CoPx in 1.0 M KOH in the catalytic turnover region. -- Figure S16. (a-c) HER LSV curves with (red) and without (blue) 100% iR drop correction. (d) Corresponding Tafel lines. -- Figure S17. The CV curves of CoP-HS, CoP2-HS and CoP3-HS measured in 1.0 M KOH solution for 1st (a), 3rd (b), 5th (c), and 10th (d) cycles at a scan rate 10 mV/s. -- Figure S18. (a) The XPS spectra, and (b) the SEM image and EDS chemical mapping of CoP-HS after 100 h HER stability measurement in 1 M KOH. -- Figure S19. TEM images of CoP-HS after HER stability test (a). Elements mapping and SAED of CoP-HS after HER stability test (b-f). -- Figure S20. (a) The LSV curves of CoP-HS, CoP2-HS, CoP3-HS and Pt/C measured in 0.5 M H2SO4 toward HER at scan rate 10 mV/s. (b) The corresponding Tafel plots for the samples in 0.5 M H2SO4. (c) Nyquist plots of CoP-HS, CoP2-HS, CoP3-HS in 0.5 M H2SO4. (All the tests were taken on carbon paper). -- Figure S21. (a) The LSV curves of carbon paper measured in 0.5 M H2SO4 toward HER at scan rate 10 mV/s. (b) The data of CoP-HS, CoP2-HS and CoP3-HS test in 0.5 M H2SO4. -- Figure S22. The CV curves of CoP-HS, CoP2-HS and CoP3-HS measured in 0.5 M H2SO4 solution for 1st (a), 3rd (b), 5th (c), and 10th (d) cycles at a scan rate 10 mV/s. -- Figure S23. (a) The chronopotentiometry curve of CoP at the current density of -20 mA cm-2 for 100 h in 0.5 M H2SO4. (b) The SEM image and EDS chemical mapping (d) of CoP single-shelled nanocages after 100 h HER stability measurement. -- Figure S24. Overall water splitting activities of CoP||CoP and Pt/C||IrO2. -- Figure S25. (a, b, c, d, e, f) Corresponding levels of oxygen and hydrogen gas generated at 0 s, 200 s, 400 s, 600 s, 800 s, 1000 s. -- Figure S26. Optimized configuration of CoP-HS adsorbed with H. -- Figure S27. Optimized configuration of CoP2-HS adsorbed with H. -- Figure S28. Optimized configurations of CoP3-HS adsorbed with H. -- Figure S29. HER free energy changes of CoP-HS, CoP2-HS and CoP3-HS at P-sites and Co-site. in 0.5 M H2SO4. (c) P(2p) XPS spectra of CoP-HS after 100 h HER stability. -- Figure S30. The normalized LSV curves of CoP-HS, CoP2-HS, and CoP3-HS. -- Figure S31. The correlation between the HER free energy changes based on Co-sites of CoPx-HS and the normalized overpotential as well as Tafel slope measurement. -- Table S1. Elemental composition of Co and P in the different cobalt phosphides. -- Table S2. Comparison of the alkaline OER efficiency of those cobalt phosphides with other reported advanced cathodic materials. -- Table S3. Comparison of the alkaline HER efficiency of this CoP with other reported advanced cathodic materials. -- Table S4. Comparison of the acidic HER efficiency of this CoP with other reported advanced cathodic materials. -- Table S5. Comparison of the alkaline overall water-splitting efficiency of this CoP with other reported advanced bifunctional catalysts., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331796
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331796
HANDLE: http://hdl.handle.net/10261/331796
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331796
PMID: http://hdl.handle.net/10261/331796
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331796
Ver en: http://hdl.handle.net/10261/331796
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331796

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331815
Set de datos (Dataset). 2022

GLASS POLING AS A SUBSTRATE SURFACE PRE-TREATMENT FOR IN SITU METAL NANOPARTICLE FORMATION BY REDUCTION OF METAL SALT: SUPPLEMENT INFORMATION

  • Selvam, Tamil Selvi
  • Pervan, Petar
  • Sancho-Parramon, Jordi
  • Spadaro, Maria Chiara
  • Arbiol, Jordi
  • Janicki, Vesna
6 pages. -- Table 1. Composition of different glass types used as substrates. -- Fig. 1. Comparison of Ψ and Δ spectra for standard sample step and poled region, together with corresponding fits. -- Fig. 2. Au NPs: poled and step region ε2 (a) and corresponding SEM micrographs (b, c). -- Fig. 3. The effect of plasma cleaning: comparison of sample cleaned with plasma upon GP and prior to coating (left) and a standard sample (right). -- Fig. 4 Difference of ε2 for Ag NPs containing layers over poled and step region for Cr containing sample. -- Fig. 5. SEM micrographs: transition between step (upper part) and poled region (lower part) of the sample with higher Ag concentration in the coating (a), protrusion of crystallites from the coating (b), out diffused crystallites (c) and their clustering (d). EDS of step region: at the site of the crystallite (e) and a site next to it (f). -- Fig. 6. The sample coated immediately after poling in vacuum: comparison of Ψ and Δ spectra for step and poled region (a) and b), respectively). -- Fig. 7. Transition between step and poled region of the sample coated immediately after poling in vacuum: from step region with out-diffused Na crystallites to the poled, crystallites free region confirming absence of IE., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331815
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331815
HANDLE: http://hdl.handle.net/10261/331815
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331815
PMID: http://hdl.handle.net/10261/331815
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331815
Ver en: http://hdl.handle.net/10261/331815
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331815

Buscador avanzado