Resultados totales (Incluyendo duplicados): 36
Encontrada(s) 4 página(s)
CORA.Repositori de Dades de Recerca
doi:10.34810/data141
Dataset. 2021

PFUJI-SIZE DATASET: PHOTOGRAMMETRY-DERIVED 3D POINT CLOUDS OF FUJI APPLES TREES WITH ANNOTATIONS TO EVALUATE FRUIT DETECTION AND SIZE ESTIMATION METHODOLOGIES

  • Gené Mola, Jordi
  • Sanz Cortiella, Ricardo
  • Rosell Polo, Joan Ramon
  • Escolà i Agustí, Alexandre
  • Gregorio López, Eduard
The PFuji-Size dataset [2] includes the 3D point clouds of 6 Fuji apple trees containing a total of 615 apples and an additional 25 apples scanned in laboratory conditions. Structure-from-motion and multi-view stereo techniques were used to generate the 3D point clouds of the captured scene. Apple locations and ground truth diameter annotations are provided for assessing fruit detection and size estimation algorithms.

Proyecto: //
DOI: https://doi.org/10.34810/data141
CORA.Repositori de Dades de Recerca
doi:10.34810/data141
HANDLE: https://doi.org/10.34810/data141
CORA.Repositori de Dades de Recerca
doi:10.34810/data141
PMID: https://doi.org/10.34810/data141
CORA.Repositori de Dades de Recerca
doi:10.34810/data141
Ver en: https://doi.org/10.34810/data141
CORA.Repositori de Dades de Recerca
doi:10.34810/data141

CORA.Repositori de Dades de Recerca
doi:10.34810/data2315
Dataset. 2025

AMODAL_FRUIT_SIZING

  • Gené Mola, Jordi
  • Ferrer Ferrer, Mar
  • Blok, Pieter
  • Hemming, Jochen
  • Rosell Polo, Joan Ramon
  • Morros Rubió, Josep Ramon
  • Vilaplana Besler, Verónica
  • Ruiz Hidalgo, Javier
  • Gregorio López, Eduard
We provide a deep-learning method to better estimate the size of partially occluded apples. The method is based on ORCNN (https://github.com/waiyulam/ORCNN) and sizecnn (https://git.wur.nl/blok012/sizecnn), which extended Mask R-CNN network to simultaneously perform modal and amodal instance segmentation. The amodal mask is used to estimate the fruit diameter in pixels, while the modal mask is used to measure in the depth map the distance between the detected fruit and the camera and calculate the fruit diameter in mm by applying the pinhole camera model.

Proyecto: //
DOI: https://doi.org/10.34810/data2315
CORA.Repositori de Dades de Recerca
doi:10.34810/data2315
HANDLE: https://doi.org/10.34810/data2315
CORA.Repositori de Dades de Recerca
doi:10.34810/data2315
PMID: https://doi.org/10.34810/data2315
CORA.Repositori de Dades de Recerca
doi:10.34810/data2315
Ver en: https://doi.org/10.34810/data2315
CORA.Repositori de Dades de Recerca
doi:10.34810/data2315

CORA.Repositori de Dades de Recerca
doi:10.34810/data2318
Dataset. 2025

MULTITASK_RGB-D_FRUITDETECTIONANDSIZING

  • Ferrer Ferrer, Mar
  • Ruiz Hidalgo, Javier
  • Gregorio López, Eduard
  • Vilaplana Besler, Verónica
  • Morros Rubió, Josep Ramon
  • Gené Mola, Jordi
Multitask Deep Neural Network for Fruit Detection and Regresion of Fruit Diameters in RGB-D images (based on Detectron2). This project is an extension of the MaskRCNN architecture that allows to compute the diameter of fruits along with performing instance segmentation. The baseline for this project has been the detectron2 implementation of the MaskRCNN (https://github.com/facebookresearch/detectron2).

Proyecto: //
DOI: https://doi.org/10.34810/data2318
CORA.Repositori de Dades de Recerca
doi:10.34810/data2318
HANDLE: https://doi.org/10.34810/data2318
CORA.Repositori de Dades de Recerca
doi:10.34810/data2318
PMID: https://doi.org/10.34810/data2318
CORA.Repositori de Dades de Recerca
doi:10.34810/data2318
Ver en: https://doi.org/10.34810/data2318
CORA.Repositori de Dades de Recerca
doi:10.34810/data2318

CORA.Repositori de Dades de Recerca
doi:10.34810/data2319
Dataset. 2025

SFM_3D_FRUIT_DETECTION

  • Gené Mola, Jordi
  • Sanz Cortiella, Ricardo
  • Rosell Polo, Joan Ramon
  • Morros Rubió, Josep Ramon
  • Ruiz Hidalgo, Javier
  • Vilaplana Besler, Verónica
  • Gregorio López, Eduard
Fruit detection and 3D location in photogrammetry-derived 3D point clouds. This project is a matlab implementation to project image detections (instance segmentation masks) onto 3D point clouds generated using structure-from-motion.

Proyecto: //
DOI: https://doi.org/10.34810/data2319
CORA.Repositori de Dades de Recerca
doi:10.34810/data2319
HANDLE: https://doi.org/10.34810/data2319
CORA.Repositori de Dades de Recerca
doi:10.34810/data2319
PMID: https://doi.org/10.34810/data2319
CORA.Repositori de Dades de Recerca
doi:10.34810/data2319
Ver en: https://doi.org/10.34810/data2319
CORA.Repositori de Dades de Recerca
doi:10.34810/data2319

CORA.Repositori de Dades de Recerca
doi:10.34810/data2320
Dataset. 2025

AGLIMATCH DATASET

  • Guevara, Javier
  • Gené Mola, Jordi
  • Gregorio López, Eduard
  • Torres-Torriti, Miguel
  • Reina, Giulio
  • Auat Cheein, Fernando
The agricultural LiDAR data to evaluate scan matching techniques (AgLiMatch dataset) is comprised of a set of Velodyne VLP-16 LiDAR captures and the corresponding GNSS-RTK tracks acquired in a Fuji apple orchard using an autonomous platform. This dataset was used in [1] to evaluate scan matching techniques by comparing the platform path calculated using LiDAR scan matching techniques and the actual platform path ground truth measured with a GNSS-RTK system. The correspondence between each LiDAR file (inside /velodyne_data folder) and GNSS track file (inside /GNSS_data folder) is detailed in “Velodyne-GNSS_correspondence-data.xlsx” file. The relative position between the LiDAR sensor and the GNSS rover is shown in “experimental_setup.png”. Distance units are in mm.

Proyecto: //
DOI: https://doi.org/10.34810/data2320
CORA.Repositori de Dades de Recerca
doi:10.34810/data2320
HANDLE: https://doi.org/10.34810/data2320
CORA.Repositori de Dades de Recerca
doi:10.34810/data2320
PMID: https://doi.org/10.34810/data2320
CORA.Repositori de Dades de Recerca
doi:10.34810/data2320
Ver en: https://doi.org/10.34810/data2320
CORA.Repositori de Dades de Recerca
doi:10.34810/data2320

CORA.Repositori de Dades de Recerca
doi:10.34810/data2321
Dataset. 2025

APPLE_SIZE_ESTIMATION_IN_3D_POINT_CLOUDS

  • Gené Mola, Jordi
  • Sanz Cortiella, Ricardo
  • Rosell Polo, Joan Ramon
  • Escolà i Agustí, Alexandre
  • Gregorio López, Eduard
Apple size estimation using photogrammetry-derived 3D point clouds. This project is a matlab implementation for apple size estimation in 3D point clouds. Four different size estimation methods are implemented: largest segment, least squares, MSAC and template matching.

Proyecto: //
DOI: https://doi.org/10.34810/data2321
CORA.Repositori de Dades de Recerca
doi:10.34810/data2321
HANDLE: https://doi.org/10.34810/data2321
CORA.Repositori de Dades de Recerca
doi:10.34810/data2321
PMID: https://doi.org/10.34810/data2321
CORA.Repositori de Dades de Recerca
doi:10.34810/data2321
Ver en: https://doi.org/10.34810/data2321
CORA.Repositori de Dades de Recerca
doi:10.34810/data2321

CORA.Repositori de Dades de Recerca
doi:10.34810/data2323
Dataset. 2025

FRUIT_DETECTION_IN_LIDAR_POINTCLOUDS

  • Gené Mola, Jordi
  • Gregorio López, Eduard
  • Auat Cheein, Fernando
  • Guevara, Javier
  • Llorens Calveras, Jordi
  • Sanz Cortiella, Ricardo
  • Escolà i Agustí, Alexandre
  • Rosell Polo, Joan Ramon
This project is a matlab implementation for fruit detection in 3D point clouds acquired with LiDAR sensor Velodyne VLP-16 (Velodyne LIDAR Inc., San Jose, CA, USA). This implementation was used to evaluate the LFuji-air dataset, which contains 3D LiDAR data of 11Fuji apple trees with the corresponding fruit position annotations.

Proyecto: //
DOI: https://doi.org/10.34810/data2323
CORA.Repositori de Dades de Recerca
doi:10.34810/data2323
HANDLE: https://doi.org/10.34810/data2323
CORA.Repositori de Dades de Recerca
doi:10.34810/data2323
PMID: https://doi.org/10.34810/data2323
CORA.Repositori de Dades de Recerca
doi:10.34810/data2323
Ver en: https://doi.org/10.34810/data2323
CORA.Repositori de Dades de Recerca
doi:10.34810/data2323

CORA.Repositori de Dades de Recerca
doi:10.34810/data2326
Dataset. 2025

RGBD_SENSORS_EVALUATION_IN_ORCHARDS

  • Gené Mola, Jordi
  • Llorens Calveras, Jordi
  • Rosell Polo, Joan Ramon
  • Gregorio López, Eduard
  • Arnó Satorra, Jaume
  • Solanelles Batlle, Francesc
  • Martínez Casasnovas, José Antonio
  • Escolà i Agustí, Alexandre
Matlab implementation to evaluate RGB-D sensor performance in orchard environments. This project is a matlab implementation to evaluate RGB-D sensor performances by analysing RGB-D data acquired in different orchard conditions. The code follows the assessment methodology presented in [1], and it was used to evaluate the performance of Microsoft Kinect v2 by using the KEvOr dataset.

Proyecto: //
DOI: https://doi.org/10.34810/data2326
CORA.Repositori de Dades de Recerca
doi:10.34810/data2326
HANDLE: https://doi.org/10.34810/data2326
CORA.Repositori de Dades de Recerca
doi:10.34810/data2326
PMID: https://doi.org/10.34810/data2326
CORA.Repositori de Dades de Recerca
doi:10.34810/data2326
Ver en: https://doi.org/10.34810/data2326
CORA.Repositori de Dades de Recerca
doi:10.34810/data2326

CORA.Repositori de Dades de Recerca
doi:10.34810/data2328
Dataset. 2025

SOFTX_SOFTX-D-22-00152

  • Miranda, Juan Carlos
  • Gené Mola, Jordi
  • Arnó Satorra, Jaume
  • Gregorio López, Eduard
AKFruitData. This repository contents source code of two applications presented in the article https://doi.org/10.1016/j.softx.2022.101231 at the time of its publication in SoftwareX Journal. The emergence of low-cost 3D sensors, and particularly RGB-D cameras, together with recent advances in artificial intelligence, is currently driving the development of in-field methods for fruit detection, size measurement and yield estimation. However, as the performance of these methods depends on the availability of quality fruit datasets, the development of ad-hoc software to use RGB-D cameras in agricultural environments is essential. The AKFruitData software introduced in this work aims to facilitate use of the Azure Kinect RGB-D camera for testing in field trials. This software presents a dual structure that addresses both the data acquisition and the data creation stages. The acquisition software (AK_ACQS) allows different sensors to be activated simultaneously in addition to the Azure Kinect. Then, the extraction software (AK_FRAEX) allows videos generated with the Azure Kinect camera to be processed to create the datasets, making available colour, depth, IR and point cloud metadata. AKFruitData has been used by the authors to acquire and extract data from apple fruit trees for subsequent fruit yield estimation. Moreover, this software can also be applied to many other areas in the framework of precision agriculture, thus making it a very useful tool for all researchers working in fruit growing.

Proyecto: //
DOI: https://doi.org/10.34810/data2328
CORA.Repositori de Dades de Recerca
doi:10.34810/data2328
HANDLE: https://doi.org/10.34810/data2328
CORA.Repositori de Dades de Recerca
doi:10.34810/data2328
PMID: https://doi.org/10.34810/data2328
CORA.Repositori de Dades de Recerca
doi:10.34810/data2328
Ver en: https://doi.org/10.34810/data2328
CORA.Repositori de Dades de Recerca
doi:10.34810/data2328

CORA.Repositori de Dades de Recerca
doi:10.34810/data2329
Dataset. 2025

AK_ACQUISITION_SYSTEM

  • Miranda, Juan Carlos
  • Gené Mola, Jordi
  • Arnó Satorra, Jaume
  • Gregorio López, Eduard
AKFruitData - ak_acquisition_system is a software solution for data acquisition in fruit orchards using a sensor system boarded on a terrestrial vehicle. It allows the coordination of computers and sensors through the sending of remote commands via a GUI. https://doi.org/10.1016/j.softx.2022.101231. AK_ACQS is a software solution for data acquisition in fruit orchards using a sensor system boarded on a terrestrial vehicle. It allows the coordination of computers and sensors through the sending of remote commands via a GUI. At the same time, it adds an abstraction layer on library stack of each sensor, facilitating its integration. This software solution is supported by a local area network (LAN), which connects computers and sensors from different manufacturers ( cameras of different technologies, GNSS receiver) for in-field fruit yield testing.

Proyecto: //
DOI: https://doi.org/10.34810/data2329
CORA.Repositori de Dades de Recerca
doi:10.34810/data2329
HANDLE: https://doi.org/10.34810/data2329
CORA.Repositori de Dades de Recerca
doi:10.34810/data2329
PMID: https://doi.org/10.34810/data2329
CORA.Repositori de Dades de Recerca
doi:10.34810/data2329
Ver en: https://doi.org/10.34810/data2329
CORA.Repositori de Dades de Recerca
doi:10.34810/data2329

Buscador avanzado