Resultados totales (Incluyendo duplicados): 19
Encontrada(s) 2 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/307457
Dataset. 2021

DATASET RELATED TO THE PUBLICATION "THERMAL PROPERTIES OF NANOCRYSTALLINE SILICON NANOBEAMS"

  • Maire, Jeremie
  • Chávez-Angel, Emigdio
  • Arregui, Guillermo
  • Colombano, Martin F.
  • Capuj, Néstor E.
  • Griol, Amadeu
  • Martínez, Alejandro
  • Navarro-Urrios, D.
  • Ahopelto, Jouni
  • Sotomayor Torres, C. M.
Versión 1. El artículo en el que se basan los datos fue publicado en Advanced Functional Materials 32(4): 2105767 (2022), Dataset contains the raw data from which the graphs in paper "Thermal properties of nanocrystalline silicon nanobeams"., Grants: European Commission: PHENOMEN - All-Phononic circuits Enabled by Opto-mechanics (713450) NANOPOLY - Artificial permittivity and permeability engineering for future generation sub wavelength analogue integrated circuits and systems (829061), Peer reviewed

DOI: http://hdl.handle.net/10261/307457
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/307457
HANDLE: http://hdl.handle.net/10261/307457
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/307457
PMID: http://hdl.handle.net/10261/307457
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/307457
Ver en: http://hdl.handle.net/10261/307457
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/307457

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/309320
Dataset. 2022

DATA FILES FOR THE ARTICLE "ENGINEERING NANOSCALE HYPERSONIC PHONON TRANSPORT"

  • Florez, Omar
  • Arregui, Guillermo
  • Albrechtsen, Marcus
  • Ng, Ryan C.
  • Gomis-Bresco, J.
  • Stobbe, Søren
  • Sotomayor Torres, C. M.
  • García, Pedro David
4 files. -- crystal_a-220nm.zip; crystal_a-330nm.zip; crystal_a-440nm.zip; waveguide_a_440.zip, Data files for the article "Engineering nanoscale hypersonic phonon transport". Published in Nature Nanotechnology., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/309320
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/309320
HANDLE: http://hdl.handle.net/10261/309320
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/309320
PMID: http://hdl.handle.net/10261/309320
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/309320
Ver en: http://hdl.handle.net/10261/309320
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/309320

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329981
Dataset. 2022

SUPPLEMENTARY INFORMATION EFFECT OF CRYSTALLINITY AND THICKNESS ON THERMAL TRANSPORT IN LAYERED PTSE2

  • Sachat, Alexandros el
  • Xiao, Peng
  • Donadio, Davide
  • Bonell, Fréderic
  • Sledzinska, Marianna
  • Marty, Alain
  • Vergnaud, Céline
  • Boukari, Hervé
  • Jamet, Matthieu
  • Arregui, Guillermo
  • Chen, Zekun
  • Alzina, Francesc
  • Sotomayor Torres, C. M.
  • Chávez-Angel, Emigdio
15 pages. -- Supplementary Figure 1. Reflection high energy electron diffraction (RHEED) measurements and the final structure of the PtSe2 wedge sample. -- Supplementary Figure 2. X-ray diffraction measurements in PtSe2. -- Supplementary Figure 3. AFM measurements. -- Supplementary Note 1: FDTR sensitivity analysis. -- Supplementary Figure 4. Phase sensitivity analysis for thin PtSe2 films. -- Supplementary Figure 5. Phase sensitivity analysis for bulk PtSe2. -- Supplementary Note 2: Spot size measurements. -- Supplementary Figure 6. Spot size measurements. -- Supplementary Note 3: Three omega measurements. -- Supplementary Figure 7. Three omega measurements. -- Supplementary Note 4: Raman thermometry measurements. -- Supplementary Table 1. Measured cross-plane thermal conductivity obtained by Raman thermometry and FDTR. -- Supplementary Figure 8. Raman thermometry measurements. -- Supplementary Note 5: Fourier transform from ASOPS data. -- Supplementary Figure 9. Fast Fourier transform of the layered breathing modes. -- Supplementary Figure 10. DFT calculations. -- Supplementary Figure 11. FDTR data from bulk PtSe2 crystal and the best model fit in a low frequency range (20 kHz - 1 MHz) for a ratio kr/kz = 9. -- Supplementary Figure 12. (a) XRD radial scans in the polycrystalline wedge sample showing the polycrystalline nature of the PtSe2 film. -- Supplementary Figure 13. Interface thermal resistance measurements. -- Supplementary Figure 14. Raman line scan between 1 and 3 ML PtSe2 in the crystalline wedge sample., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329981
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329981
HANDLE: http://hdl.handle.net/10261/329981
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329981
PMID: http://hdl.handle.net/10261/329981
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329981
Ver en: http://hdl.handle.net/10261/329981
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329981

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330302
Dataset. 2022

SUPPLEMENTARY MATERIAL SPECTROSCOPIC AND THERMAL CHARACTERIZATION OF EXTRA VIRGIN OLIVE OIL ADULTERATED WITH EDIBLE OILS

  • Chávez-Angel, Emigdio
  • Puertas, Belén
  • Kreuzer, Martin
  • Soliva Fortuny, Robert
  • Ng, Ryan C.
  • Castro-Álvarez, Alejandro
  • Sotomayor Torres, C. M.
7 pages. -- Figure S1: Sample preparation. -- Figure S2: IR spectra second derivative and pc loading of EVOO, pomace, corn, and soy-nut oils. -- Figure S3: Photoluminescence of EVOO adulterated with different concentrations of: (a) corn, (b) soy-nut blend, (c) high oleic sunflower, (d) sunflower oils, and (e) olive-pomace oils. -- Figure S4: Normalized Raman spectra of EVOO adulterated with different concentrations of: (a) ol-ive-pomace, (b) soy-nut blend, and (c) corn oils. -- Figure S5: Normalized Raman spectra of EVOO measured directly from its package. -- Figure S6: 2DCOS map of pure EVOO. -- Table S1: Schematic representation of FTIR dataset for PCA. -- Table S2: Acid content of the studied edible oils., ICN2 is supported by the Severo Ochoa program from the Spanish Research Agency (AEI, grant no. SEV-2017-0706) and by the CERCA Programme/Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/330302
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330302
HANDLE: http://hdl.handle.net/10261/330302
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330302
PMID: http://hdl.handle.net/10261/330302
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330302
Ver en: http://hdl.handle.net/10261/330302
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330302

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330341
Dataset. 2022

SUPPORTING INFORMATION THERMAL RECTIFICATION AND THERMAL LOGIC GATES IN GRADED ALLOY SEMICONDUCTORS

  • Ng, Ryan C.
  • Castro-Álvarez, Alejandro
  • Sotomayor Torres, C. M.
  • Chávez-Angel, Emigdio
4 pages. -- Table S1: Summary of COMSOL parameters. -- Table S2: Truth table for an AND-gate based on a pure Si slab. -- Table S3: Truth table for an AND-gate based on a pure Ge slab. -- Figure S1: Temperature and thermal conductivity distributions along a Si(1−x)Gex slab for different spatial atomic distributions. -- Figure S2: Thermal conductivity distributions in various alloy systems. -- Figure S3: Comparison of rectification in various alloy systems. -- Figure S4: Comparison of the effectiveness as x is varied., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330341
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330341
HANDLE: http://hdl.handle.net/10261/330341
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330341
PMID: http://hdl.handle.net/10261/330341
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330341
Ver en: http://hdl.handle.net/10261/330341
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330341

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330422
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. MATER., DOI: 10.1002/ADMA.202108352 UNRAVELING HEAT TRANSPORT AND DISSIPATION IN SUSPENDED MOSE2 FROM BULK TO MONOLAYER

  • Saleta Reig, David
  • Varghese, Sebin
  • Farris, Roberta
  • Block, Alexander
  • Mehew, Jake D.
  • Hellman, Olle
  • Woźniak, Pawel
  • Sledzinska, Marianna
  • Sachat, Alexandros el
  • Chávez-Angel, Emigdio
  • Valenzuela, Sergio O.
  • Hulst, Niek F. van
  • Ordejón, Pablo
  • Zanolli, Zeila
  • Sotomayor Torres, C. M.
  • Verstraete, Matthieu J.
  • Tielrooij, Klaas-Jan
21 pages. -- PDF file includes: 1 Simulation of Raman thermometry experiment. -- 2 Exfoliated MoSe2 flakes on PDMS and thickness determination. -- 3 Raman spectra as a function of incident laser power on suspended MoSe2 crystals. -- 4 Temperature calibrations at suspended and supported regions of MoSe2 crystals. -- 5. Thermal transport simulation. -- 6 Experimental approach: eliminating substrate-induced artifacts. -- 7 Experiment vs literature. -- 8 Phonon dispersions for different MoSe2 layers. -- 9 Theory vs literature. -- 10 Calculated temperature dependence of thermal conductivity. -- 11 Calculated in-plane thermal conductivity of MoSe2, WSe2 and MoS2. -- 12 Phonon lifetimes for monolayer and bulk MoSe2. -- 13 Cumulative spectral conductivity ratios at 300 K. -- 14 Determination of laser spot size. -- Table S1: Optical absorption, power and temperature coefficients., ICN2 was supported by the Severo Ochoa program from Spanish MINECO Grant No. SEV-2017-0706 and Generalitat de Catalunya (CERCA program and Grant 201756R1506)., Peer reviewed

DOI: http://hdl.handle.net/10261/330422
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330422
HANDLE: http://hdl.handle.net/10261/330422
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330422
PMID: http://hdl.handle.net/10261/330422
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330422
Ver en: http://hdl.handle.net/10261/330422
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330422

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336360
Dataset. 2023

SUPPLEMENTARY MATERIALS APPLICATION OF SYNCHROTRON RADIATION-BASED FOURIER-TRANSFORM INFRARED MICROSPECTROSCOPY FOR THERMAL IMAGING OF POLYMER THIN FILMS

  • Chávez-Angel, Emigdio
  • Ng, Ryan C.
  • Sandell, Susanne
  • He, Jianying
  • Castro-Álvarez, Alejandro
  • Sotomayor Torres, C. M.
  • Kreuzer, Martin
10 pages. -- Figure S1. Electrical resistivity of the gold wire measured at different temperatures in a heating stage. -- Figure S2. Simulated IR spectra of PMMA molecules. -- Figure S3. Fitted Gaussian center positions for each PMMA absorbance peak vs temperature. -- Figure S4. Fitted Gaussian amplitudes for each PMMA absorbance peak vs temperature. -- Figure S5. Fitted Gaussian full width at half maximum (FWHM) for each PMMA absorbance peak vs temperature. -- Figure S6. Synchronous (a) and asynchronous (b) two-dimensional correlation spectra obtained from temperature-dependent FTIR spectra of the PMMA film. The red and blue colors represent positive and negative cross peaks, respectively. -- Figure S7. Simulated synchronous two-dimensional correlation spectra centered at ~1149 cm-1. -- Figure S8. PMMA absorbance peaks at 283 K fitted individually using a Gaussian line shape, show-ing the data points and the fit as black lines. -- Figure S9. Fitting results for a linear fit to the temperature dependence of the peak center positions for different absorbance peaks. The linear fits are shown in red in Figure S3. -- Figure S10. Thermal decay as function of sample position for different temperatures of the heater wire. The solid lines represent the best fit. -- Figure S11. (a) Transferred data (scores plot) of the PCA with the calibration data (stars) and the line scan data points (circle). (b) Loadings plot of the PCA showing PC-1 (black) and PC-2 (red). -- Figure S12. Simplified workflow of the machine learning approach in this work done by Orange [12–14]., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/336360
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336360
HANDLE: http://hdl.handle.net/10261/336360
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336360
PMID: http://hdl.handle.net/10261/336360
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336360
Ver en: http://hdl.handle.net/10261/336360
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336360

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336527
Dataset. 2023

SUPPLEMENTARY MATERIAL: CONTACTLESS CHARACTERIZATION OF THE ELASTIC PROPERTIES OF GLASS MICROSPHERES

  • Maire, Jeremie
  • Necio, Tomasz
  • Chávez-Angel, Emigdio
  • Colombano, Martin F.
  • Jaramillo-Fernandez, Juliana
  • Sotomayor Torres, C. M.
  • Capuj, Néstor E.
  • Navarro-Urrios, Daniel
7 pages. -- S1. Double-check of the analytical model. -- Figure S1: Validation of the analytical model. -- S2. Analysis of the {l=4,n=1} and {l=6,n=1} vibrational modes. -- Figure S2. RF spectra of a microsphere of diameter D=36.6 m (red curve) and simulated optomechanical coupling rate of an optical whispering gallery mode with vibrational modes of the sphere. -- Figure S3. Frequencies of the {l=4,n=1} vibrational mode as a function of the inverse of the diameter. -- Figure S4. Transversal and longitudinal sound velocity curves. -- S3. Losses of the acoustic modes. -- Figure S5: Broadening of the Brillouin peak. -- S4. Image analysis of the sphericity of the microspheres. -- Figure S6. Image treatment of microsphere and the best fitted circle marked in red. -- Table S1. Summary of the extracted values of area sphericity for a set of nine microspheres., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/336527
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336527
HANDLE: http://hdl.handle.net/10261/336527
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336527
PMID: http://hdl.handle.net/10261/336527
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336527
Ver en: http://hdl.handle.net/10261/336527
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336527

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337431
Dataset. 2023

SUPPLEMENTARY INFORMATION OF ENHANCED BEHAVIOUR OF A PASSIVE THERMOELECTRIC GENERATOR WITH PHASE CHANGE HEAT EXCHANGERS AND RADIATIVE COOLING

  • Astrain, David
  • Jaramillo-Fernandez, Juliana
  • Araiz, Miguel
  • Francone, Achille
  • Catalán, Leyre
  • Jacobo-Martín, Alejandra
  • Alegría, Patricia
  • Sotomayor Torres, C. M.
2 pages. -- A. Influence of the radiative coating on the optical properties of a copper surface. -- Figure S1. a) Bare and b) radiative coated copper slabs. The rainbow colours appearing on the radiative coated slab result from the light diffraction due to the periodic structure. -- Figure S2. a) UV-Vis and b) IR spectra of bare (b-Cu) and b) radiative coated copper slabs (RC-Cu)., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337431
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337431
HANDLE: http://hdl.handle.net/10261/337431
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337431
PMID: http://hdl.handle.net/10261/337431
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337431
Ver en: http://hdl.handle.net/10261/337431
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337431

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/340922
Dataset. 2023

SUPPLEMENTARY INFORMATION FOR CAVITY OPTOMECHANICS WITH ANDERSON-LOCALIZED OPTICAL MODES

  • Arregui, Guillermo
  • Ng, Ryan C.
  • Albrechtsen, Marcus
  • Stobbe, Søren
  • Sotomayor Torres, C. M.
  • García, Pedro David
30 pages. -- S1.1. Photonic band structure. -- S1.2. Disorder-induced localization. -- S.2. Sample fabrication. -- S3.1. Far-field imaging. -- S3.2. Mode volume estimation. -- S4.1. Phase matching consideration. -- S4.2. Experimental setup. -- S4.3. Group index extraction. -- S4.4. Transmission fluctuations and dimensionless conductance. -- S4.5. Quality factor distributions. -- S5. Mechanical spectroscopy. -- S6. Optomechanical coupling., Supplementary material with stadistical analysis of the localization length, the quality-factors, the mode volumes and the optomechanical coupling rates., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/340922
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/340922
HANDLE: http://hdl.handle.net/10261/340922
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/340922
PMID: http://hdl.handle.net/10261/340922
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/340922
Ver en: http://hdl.handle.net/10261/340922
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/340922

Buscador avanzado