Resultados totales (Incluyendo duplicados): 128
Encontrada(s) 13 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/305242
Dataset. 2022

GLOBALSHARKMOVEMENT / GLOBALCOLLISIONRISK

  • Womersley, Freya C.
  • Humphries, Nicolas E.
  • Queiroz, Nuno
  • Vedor, Marisa
  • Costa, Ivo da
  • Furtado, Miguel
  • Tyminski, John P.
  • Abrantes, Katya
  • Araujo, Gonzalo
  • Bach, Steffen S.
  • Barnett, Adam
  • Berumen, Michael L.
  • Bessudo Lion, Sandra
  • Braun, Camrin D.
  • Clingham, Elizabeth
  • Cochran, Jesse E. M.
  • Parra, Rafael de la
  • Diamant, Stella
  • Dove, Alistair D. M.
  • Dudgeon, Christine L.
  • Erdmann, Mark V.
  • Espinoza, Eduardo
  • Fitzpatrick, Richard
  • González Cano , Jaime
  • Green, Jonathan R.
  • Guzman, Hector M.
  • Hardenstine, Royale
  • Hasan, Abdi
  • Hazin, Fábio H. V.
  • Hearn, Alex R.
  • Hueter, Robert E.
  • Jaidah, Mohammed Y.
  • Labaja, Jessica
  • Ladino, Felipe
  • Macena, Bruno C. L.
  • Morris, John J.
  • Norman, Bradley M.
  • Peñaherrera-Palma, Cesar
  • Pierce, Simon J.
  • Quintero, Lina M.
  • Ramírez-Macías, Dení
  • Reynolds, Samantha D.
  • Richardson, Anthony J.
  • Robinson, David P.
  • Rohner, Christoph A.
  • Rowat, David R. L.
  • Sheaves, Marcus
  • Shivji, Mahmood S.
  • Sianipar, Abraham B.
  • Skomal, Gregory B.
  • Soler, German
  • Syakurachman, Ismail
  • Thorrold, Simon R.
  • Webb, D. Harry
  • Wetherbee, Bradley M.
  • White, Timothy D.
  • Clavelle, Tyler
  • Kroodsma, David A.
  • Thums, Michele
  • Ferreira, Luciana C.
  • Meekan, Mark G.
  • Arrowsmith, Lucy M.
  • Lester, Emily K.
  • Meyers, Megan M.
  • Peel, Lauren R.
  • Sequeira, Ana M. M.
  • Eguíluz, Víctor M.
  • Duarte, Carlos M.
  • Sims, David W.
Repository containing derived data for the manuscript 'Global collision-risk hotspots of marine traffic and the world's largest fish, the whale shark'., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/305242, https://github.com/GlobalSharkMovement/GlobalCollisionRisk
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/305242
HANDLE: http://hdl.handle.net/10261/305242, https://github.com/GlobalSharkMovement/GlobalCollisionRisk
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/305242
PMID: http://hdl.handle.net/10261/305242, https://github.com/GlobalSharkMovement/GlobalCollisionRisk
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/305242
Ver en: http://hdl.handle.net/10261/305242, https://github.com/GlobalSharkMovement/GlobalCollisionRisk
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/305242

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/310828
Dataset. 2019

COMMON PHOTOSINTHETIC ENZYMES FROM 174 METAGENOMES FROM THE MALASPINA EXPEDITION 2010 (ORTEGA ET AL. 2019)

  • Sánchez, Pablo
  • Sebastián, Marta
  • Salazar, Guillem
  • Cornejo-Castillo, Francisco M.
  • Massana, Ramon
  • Duarte, Carlos M.
  • Acinas, Silvia G.
  • Gasol, Josep M.
Predicted genes corresponding to the four most common enzymes present in photosynthetic organisms: NADH:ubiquinone reductase (H+-translocating), N-acetyl-gamma-glutamyl-phosphate reductase, DNA-directed RNA polymerase and non-specific serine/threonine protein kinase of 174 metagenomes sequenced during the Malaspina 2010 global expedition., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/310828
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/310828
HANDLE: http://hdl.handle.net/10261/310828
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/310828
PMID: http://hdl.handle.net/10261/310828
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/310828
Ver en: http://hdl.handle.net/10261/310828
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/310828

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312498
Dataset. 2021

DEFECT ENGINEERING IN SOLUTION-PROCESSED POLYCRYSTALLINE SNSE LEADS TO HIGH THERMOELECTRIC PERFORMANCE [DATASET]

  • Liu, Yu
  • Calcabrini, Mariano
  • Yu, Yuan
  • Lee, Seung-Ho
  • Chang, Cheng
  • David, Jeremy
  • Ghosh, T.
  • Spadaro, Maria Chiara
  • Xie, Chenyang
  • Cojocaru-Mirédin, Oana
  • Arbiol, Jordi
  • Ibáñez, María
29 pages. -- Content: The tracking process of adsorption of CdSe species on the SnSe surface; XRD patterns of SnSe and SnSe-x%CdSe nanocomposites; SEM images of SnSe-3%CdSe nanocomposites at the different stages; SEM images of annealed SnSe-x%CdSe nanopowders; Grain size evolution study for bare SnSe and SnSe-3%CdSe; SEM images at different magnifications of SnSe and SnSe-3%CdSe pellets; EBSD microstructure of SnSe and SnSe-3%CdSe pellets; XRD pattern of recrystallized CdSe; SEM images of annealed SnSe powder at 350°C; EDS elemental mapping for SnSe-3%CdSe; Surface treatment; Thermogravimetric analyses; SnSe-CdSe phase diagram; High-temperature XRD analyses of SnSe and SnSe-3%CdSe; Lattice parameters and unit cell volume of SnSe-3%PbS pellet; TE properties of SnSe-CdSe samples with different content of CdSe; Band structure changes in SnSe induced by the CdSe NPs; TE properties of SnSe and SnSe-3%CdSe measured in parallel direction; Heat capacity Cp of SnSe-3%CdSe; Percentage variations in the TE properties of SnSe-x%CdSe compared to SnSe; Lattice thermal conductivity (κL) calculation; Literature comparison; TEM images of SnSe-3%CdSe sample; Material stability and repeatability; Cylindrical pellet cutting; Theoretical zT prediction; Pellet density and composition; References., SnSe has emerged as one of the most promising materials for thermoelectric energy conversion due to its extraordinary performance in its single-crystal form and its low-cost constituent elements. However, to achieve an economic impact, the polycrystalline counterpart needs to replicate the performance of the single crystal. Herein, we optimize the thermoelectric performance of polycrystalline SnSe produced by consolidating solution-processed and surface-engineered SnSe particles. In particular, the SnSe particles are coated with CdSe molecular complexes that crystallize during the sintering process, forming CdSe nanoparticles. The presence of CdSe nanoparticles inhibits SnSe grain growth during the consolidation step due to Zener pinning, yielding a material with a high density of grain boundaries. Moreover, the resulting SnSe–CdSe nanocomposites present a large number of defects at different length scales, which significantly reduce the thermal conductivity. The produced SnSe–CdSe nanocomposites exhibit thermoelectric figures of merit up to 2.2 at 786 K, which is among the highest reported for solution-processed SnSe., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/312498
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312498
HANDLE: http://hdl.handle.net/10261/312498
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312498
PMID: http://hdl.handle.net/10261/312498
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312498
Ver en: http://hdl.handle.net/10261/312498
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312498

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328251
Dataset. 2022

MALASPINA 2010 OPTICAL DATA: ACDOM_APARTICLES_KD_Z10%

  • Overmans, S.
  • Duarte, Carlos M.
  • Sobrino, Cristina
  • Iuculano, Francesca
  • Álvarez-Salgado, Xosé Anton
  • Agustí, Susana
The dataset is comprised of: downwelling diffuse attenuation coefficients, Z10%, aCDOM and ap., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/328251
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328251
HANDLE: http://hdl.handle.net/10261/328251
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328251
PMID: http://hdl.handle.net/10261/328251
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328251
Ver en: http://hdl.handle.net/10261/328251
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328251

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328261
Dataset. 2022

MALASPINA 2010 OPTICAL DATA: ACDOM_APARTICLES_KD_Z10%

  • Overmans, S.
  • Duarte, Carlos M.
  • Sobrino, Cristina
  • Iuculano, Francesca
  • Álvarez-Salgado, Xosé Anton
  • Agustí, Susana
The dataset is comprised of: downwelling diffuse attenuation coefficients, Z10%, aCDOM and ap, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/328261
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328261
HANDLE: http://hdl.handle.net/10261/328261
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328261
PMID: http://hdl.handle.net/10261/328261
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328261
Ver en: http://hdl.handle.net/10261/328261
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/328261

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329403
Dataset. 2022

SUPPORTING INFORMATION FOR PENETRATION OF ULTRAVIOLET-B RADIATION IN OLIGOTROPHIC REGIONS OF THE OCEANS DURING THE MALASPINA 2010 EXPEDITION

  • Overmans, S.
  • Duarte, Carlos M.
  • Sobrino, Cristina
  • Iuculano, Francesca
  • Álvarez-Salgado, Xosé Anton
  • Agustí, Susana
Contents of this file: Figures S1 to S8 and Table S1. -- Figure S1. CDOM absorption coefficients (aCDOM, in m-1) at UV-B wavelengths 305 nm (top panel), 313 nm (middle panel), and 320 nm (bottom panel) measured during the Malaspina 2010 Expedition. Reported values are depth-weighted averages from surface waters (3 m depth) down to the 20% PAR depth. -- Figure S2. Results of the Dunn’s tests, that were performed after Kruskal-Wallis tests to identify if aCDOM (top row), ap (middle row) and ap as % of anw (bottom row) at 305 nm (left column), 313 nm (middle column) and 320 nm (right column) varied significantly (p<0.05) between Longhurst provinces during the Malaspina 2010 Expedition. For a description of the Longhurst province codes, see Fig. 1. -- Figure S3. Particulate absorption coefficients (ap, in m-1) at UV-B wavelengths 305 nm (top panel), 313 nm (middle panel), and 320 nm (bottom panel) measured during the Malaspina Expedition. Reported values are depth-weighted averages from surface waters (3 m depth) down to the 20% PAR depth. -- Figure S4. Downwelling diffuse attenuation coefficients (Kd, in m-1) for the UV-B wavelengths 305 nm (top panel), 313 nm (middle panel), and 320 nm (bottom panel) measured during the Malaspina 2010 Circumnavigation. -- Figure S5. Downwelling diffuse attenuation coefficients (Kd, in m-1) for the UV-A wavelengths 340 nm (top panel), 380 nm (middle panel), and 395 nm (bottom panel) measured during the Malaspina 2010 Expedition. -- Figure S6. Downwelling diffuse attenuation coefficients (Kd, in m-1) for the integrated PAR spectrum (400–700 nm) measured during the Malaspina 2010 Expedition. -- Figure S7. Results of the Dunn’s tests, that were performed after Kruskal-Wallis tests to identify if the downwelling diffuse attenuation coefficient (Kd) at 305, 313, 320, 340 nm varied significantly (p <0.05) between Longhurst provinces during the Malaspina 2010 Expedition. For a description of the Longhurst provinces code, see Fig. 1. -- Figure S8. Seasonal comparison between cloud fractions in the northern and southern tropics (15.5N to 15.5S) in year 2010. Bars represent monthly averages (mean  SD) of 1 x 1 sector squares between 179.5W and 179.5E (n=5760 per bar). Data were obtained from the publicly available Aqua/MODIS satellite data set curated by NASA’s Earth Observatory (https://earthobservatory.nasa.gov/global-maps/MODAL2_M_CLD_FR). WIN, SPR, SUM and AUT refer to winter, spring, summer and autumn, respectively. WIN1 represents December for the northern latitudes and June for the southern latitudes. Asterisks indicate instances where the non-paired t-test identified significantly different means at level p <0.01. -- Table S1. Slope, correlation, 95% confidence intervals and p-values determined as part of the pairwise correlation analysis with the variables sea surface temperature, Chl-a and Kd(PAR), as well as aCDOM, ap and Kd(λ) at wavelengths 305, 313 and 320 nm. For Chl-a, aCDOM and ap, depth-weighted (3 m to 20% PAR depth) average values were used for the analysis., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329403
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329403
HANDLE: http://hdl.handle.net/10261/329403
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329403
PMID: http://hdl.handle.net/10261/329403
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329403
Ver en: http://hdl.handle.net/10261/329403
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329403

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
Dataset. 2022

SUPPORTING INFORMATION 2D/2D HETEROJUNCTION OF TIO2 NANOSHEETS / ULTRATHIN G-C3N4 FOR EFFICIENT PHOTOCATALYTIC HYDROGEN EVOLUTION

  • Du, Ruifeng
  • Li, Baoying
  • Han, Xu
  • Xiao, Ke
  • Wang, Xiang
  • Zhang, Chaoqi
  • Arbiol, Jordi
  • Cabot, Andreu
10 pages. -- Figures and tables. -- Figure S1: SEM image of (a) bulk g-C3N4 and (b) ultrathin g-C3N4, (c) N2 adsorption-desorption isotherms of bCN and uCN. -- Figure S2: FTIR spectra of OAC, OLMA and TiO2 before and after ligands remove. -- Figure S3: Zeta potential distribution spectrum of TiO2 after ligands removal (a) and uCN (b). -- Figure S4: SEM image and EDS compositional maps of a T1/uCN1 composite. -- Figure S5: SEM image of T1/uCN2 and corresponding EDS spectrum. -- Figure S6: SEM image of T1/uCN2 and corresponding EDS spectrum. -- Figure S7: SEM image of T1/uCN2 and corresponding EDS spectrum; Figure S8: Chromatogram plots for 0.5 ml of standard hydrogen injected every half hour. -- Table S1: Gas Chromatography Peak Processing Data based on figure S8. -- Figure S9: Standard hydrogen curve for gas chromatography. -- Table S2: Exponential decay-fitted parameters of fluorescence lifetime of uCN, TiO2 and T1/uCN1. -- Figure S10: Photocatalytic hydrogen generation amount on bCN, TiO2 and T1/bCN1 during 4 h under simulated solar light irradiation; Table S3: Photocatalytic hydrogen production about TiO2/g-C3N4 based catalysts. -- Table S4: The AQE values with different incident light wavelengths for T1/uCN1. -- Figure S11: (a) Stability cycles of the T1/uCN1 for H2 evolution under simulated solar light irradiation; (b) TEM image of T1/uCN1 after 20 h photocatalytic H2 evolution reaction and (c) XRD pattern of T1/uCN1 before and after 20 h photocatalytic H2O2 evolution reaction., CN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCAProgramme / Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
HANDLE: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
PMID: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689
Ver en: http://hdl.handle.net/10261/329689
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329689

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329827
Dataset. 2022

DATASHEET_1_SEAGRASS THERMAL LIMITS AND VULNERABILITY TO FUTURE WARMING.PDF

  • Marbà, Núria
  • Jordá, Gabriel
  • Bennett, Scott
  • Duarte, Carlos M.
6 pages. -- Supplementary Figure 1. Current mean maximum summer temperature (average 𝑇!"# """""" for the period 1980-2005) across potential seagrass distribution. -- Supplementary Figure 2. Difference between current mean maximum summer temperature ( 𝑇!"# """""" ) and the Tlimit as a function of latitude. Negative and positive latitude values for southern and northern hemispheres, respectively. -- Supplementary Figure 3. Uncertainty associated to the time (in years) for mean maximum summer temperature to reach seagrass upper thermal limit (Tlim) at the warming rates projected under the RCP8.5 scenario around potential seagrass sites. -- Supplementary Figure 4. Time (in years) for mean maximum summer temperature to reach the upper thermal limits (Tlim) of temperate and tropical affinity seagrass flora at the warming rates projected under the RCP8.5 scenario around potential seagrass sites in the Mediterranean Sea and Queensland (Australia) coastal areas. -- Supplementary Figure 5. The time (in years) to reach Tlimit at the warming rates predicted under the RCP4.5 scenario around potential seagrass sites. -- Supplementary Figure 6. Time (in years) for mean maximum summer temperature to reach the upper thermal limits (Tlim) of temperate and tropical affinity seagrass flora at the warming rates projected under the RCP4.5 scenario around potential seagrass sites in the Mediterranean Sea and Queensland (Australia) coastal areas., Seagrasses have experienced major losses globally mostly attributed to human impacts. Recently they are also associated with marine heat waves. The paucity of information on seagrass mortality thermal thresholds prevents the assessment of the risk of seagrass loss under marine heat waves. We conducted a synthesis of reported empirically- or experimentally-determined seagrass upper thermal limits (Tlimit) and tested the hypothesis that they increase with increasing local annual temperature. We found that Tlimit increases 0.42± 0.07°C per°C increase in in situ annual temperature (R2 = 0.52). By combining modelled seagrass Tlimit across global coastal areas with current and projected thermal regimes derived from an ocean reanalysis and global climate models (GCMs), we assessed the proximity of extant seagrass meadows to their Tlimit and the time required for Tlimit to be met under high (RCP8.5) and moderate (RCP4.5) emission scenarios of greenhouse gases. Seagrass meadows worldwide showed a modal difference of 5°C between present Tmax and seagrass Tlimit. This difference was lower than 3°C at the southern Red Sea, the Arabian Gulf, the Gulf of Mexico, revealing these are the areas most in risk of warming-derived seagrass die-off, and up to 24°C at high latitude regions. Seagrasses could meet their Tlimit regularly in summer within 50-60 years or 100 years under, respectively, RCP8.5 or RCP4.5 scenarios for the areas most at risk, to more than 200 years for the Arctic under both scenarios. This study shows that implementation of the goals under the Paris Agreement would safeguard much of global seagrass from heat-derived mass mortality and identifies regions where actions to remove local anthropogenic stresses would be particularly relevant to meet the Target 10 of the Aichi Targets of the Convention of the Biological Diversity., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329827
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329827
HANDLE: http://hdl.handle.net/10261/329827
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329827
PMID: http://hdl.handle.net/10261/329827
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329827
Ver en: http://hdl.handle.net/10261/329827
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329827

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329941
Dataset. 2022

SUPPORTING INFORMATION FOR A NOVEL Π-D CONJUGATED COBALT TETRAAZA[14]ANNULENE BASED ATOMICALLY DISPERSED ELECTROCATALYST FOR EFFICIENT CO2 REDUCTION

  • Liang, Zhifu
  • Zhang, Ting
  • Cao, Pengfei
  • Yoshida, Takefumin
  • Tang, Weiqiang
  • Wang, Xiang
  • Zuo, Yong
  • Tang, Peng-Yi
  • Heggen, Marc
  • Dunin-Borkowski, Rafal E.
  • Morante, Joan Ramón
  • Cabot, Andreu
  • Yamashita, Masahiro
  • Arbiol, Jordi
16 pages. -- Scheme S1. Scheme of the synthesis of Co-TAA. -- Figure S1. FT-IR spectra of the model compound Co-TAA, and Poly-TAA-Co powder. -- Figure S2. (a-b) HRTEM images and (c-d) STEM images of Poly-TAA-Co. -- Figure S3. EELS chemical composition maps from the red squared area of the STEM micrograph. Individual Co L2,3-edges at 779 eV (red), N K-edges at 401 eV (green), O K-edges at 532 eV (blue), and C-K edges at 284 eV (grey) and composites of Co-N, Co-O, Co-C, N-O and Co-N-C. -- Figure S4. (a)-(b) Survey, high resolution C1s XPS spectra of Poly-TAA powder, respectively. -- Figure S5. (a) Survey, high resolution C1s XPS spectra of Poly-TAA-Co powder, respectively. -- Figure S6 TGA analysis of Poly-TAA-Co under argon by heating to 600 ℃ at the rate of 5 ℃/min. -- Table S1. Co K-edge EXAFS fitting parameters for Poly-TAA-Co. -- Figure S7. N2 adsorption and desorption of Poly-TAA (a), Poly-TAA-Co (b) and Poly-TAA-Co-CNT (c), respectively. -- Figure S8. (a) Total current density of Poly-TAA-Co-CNT (7:3). (b) FE of CO and H2 at various potentials for Poly-TAA-Co-CNT (7:3). -- Figure S9 Current density for H2 production on Poly-TAA-Co-CNT(1:1) and Poly-TAA-Co-CNT(3:7). and. -- Figure S10. Nyquist plots of the electrochemical impedance spectroscopy (EIS) data of (a) Poly-TAA-Co, (b) Poly-TAA-Co-CNT(1:1) and Poly-TAA-Co-CNT(3:7) electrodes after the activation process. -- Figure S11. Linear sweep voltammetry (LSV) curves of (a) Poly-TAA-Co. -- Figure S12. FE of H2 at various potentials on Co-TAA-CNT(3:7), CoPc-CNT(3:7) and Poly-TAA-Co-CNT(3:7). -- Figure S13. XRD patterns of Poly-TAA-Co-CNT loaded on carbon paper before and after CO2RR. -- Figure S14 HAADF-STEM (a, c), BF-TEM (b, d) and HRTEM micrographs (c, e) of Poly-TAA-Co-CNT (3:7) sample (before and after CO2RR). -- Figure S15. EELS chemical composition maps obtained from the red squared area of the STEM micrograph. Individual Co L2,3-edges at 779 eV (red), N K-edges at 401 eV (green), O K-edges at 532 eV (blue), and C-K edges at 284 eV (grey) and composites of Co-N, Co-O, Co-C, N-O and Co-N-C. (Poly-TAA-Co-CNT (3:7), after electrocatalytic CO2RR). -- Figure S16. Calculated energy diagrams for CO2 to CO at -0.5 V conversion on CoPc and CoTAA molecule, respectively. -- Table S2. The comparison of electrochemical reduction of CO2 to CO for reported cobalt based electrocatalysts., ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and ICN2 and IREC are funded by the CERCA Programme /Generalitat de Catalunya., Peer reviewed

DOI: http://hdl.handle.net/10261/329941
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329941
HANDLE: http://hdl.handle.net/10261/329941
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329941
PMID: http://hdl.handle.net/10261/329941
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329941
Ver en: http://hdl.handle.net/10261/329941
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329941

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329951
Dataset. 2022

SUPPORTING INFORMATION A DEPROTECTION-FREE METHOD FOR HIGH-YIELD SYNTHESIS OF GRAPHDIYNE POWDER WITH IN SITU FORMED CUO NANOPARTICLES

  • Li, Jian
  • Han, Xu
  • Wang, Dongmei
  • Zhu, Lei
  • Ha-Thi, Minh-Huong
  • Pino, Thomas
  • Arbiol, Jordi
  • Wu, Li-Zhu
  • Ghazzal, Mohamed Nawfal
11 pages. -- PDF files includes: Experimental section; Photocatalytic experiment; Synthesis of GDY powder; Preparation of CuO/GDY/TiO2 and GDY/TiO2; Preparation of Pt loaded TiO2, tables and figures. -- Figure S1. The prepared GDY powder by using deprotection-free method. -- Table S1. Screening of catalysts and solvents for the direct coupling reaction of HEB-TMS. + entry 15 was performed under Ar conditions. -- Figure S2. GC-MS spectra of the DMF solution after reaction (balck line) and the standard curve of the corresponding compound (red line). -- Figure S3. ICP-Mass results for content of Cu in the prepared CuO/GDY samples. -- Figure S4. Low- and high-magnification SEM images of the prepared CuO/GDY samples. -- Figure S5. 1*1*1 unit crystal model of CuO and atomic supercell model illustration of the CuO nanoparticle oriented as in TEM images. -- Table S2. Comparison between the experimental and the theoretical bulk plane spacing distances and angles between planes. -- Figure S6. High-resolution XPS spectra of Si in GDY. -- Table S3. The atomic percentage of different elements in pure GDY. -- Figure S7. XRD spectra of TiO2 and CuO/GDY/TiO2 with different content. -- Figure S8. (a) Raman spectra and (b) enlarged spectra of TiO2 and CuO/GDY/TiO2 with different content. - -Figure S9. (a) the full XPS spectra of TiO2 and CuO/GDY/TiO2; (b) high-resolution XPS spectra of Cu in CuO/GDY/TiO2. -- Figure S10. UV-Vis spectra of TiO2 and CuO/GDY/TiO2 with different content. -- Figure S11. photocurrent test of CuO/GDY/TiO2, GDY/TiO2, CNT/TiO2 and GR/TiO2. -- Figure S12. Tauc plot of the prepared GDY powder. -- Figure S13. Valence band spectra of the prepared GDY powder by XPS. -- Figure S14. (a) High-resolution XPS spectra of Cu in CuO/GDY/TiO2 before and after photocatalysis; (b) fitting of Cu in in CuO/GDY/TiO2 after photocatalysis. In comparison, the satellite observed for Cu 2p (corresponding to Cu2+) is significantly reduced after illumination. -- Figure S15. The proposed photocatalytic mechanism of the CuO/GDY/TiO2 photocatalysts., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329951
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329951
HANDLE: http://hdl.handle.net/10261/329951
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329951
PMID: http://hdl.handle.net/10261/329951
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329951
Ver en: http://hdl.handle.net/10261/329951
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329951

Buscador avanzado