Resultados totales (Incluyendo duplicados): 18
Encontrada(s) 2 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312528
Dataset. 2022

SUPPORTING INFORMATION FOR THE MANUSCRIPT INFLUENCE OF THE SURFACE CHEMISTRY OF METAL–ORGANIC POLYHEDRA IN THEIR ASSEMBLY INTO ULTRATHIN FILMS FOR GAS SEPARATION

  • Tejedor, Inés
  • Andrés, Miguel A.
  • Carné-Sánchez, Arnau
  • Arjona, Mónica
  • Pérez-Miana, Marta
  • Sánchez-Laínez, Javier
  • Coronas, Joaquín
  • Fontaine, Philippe
  • Goldmann, Michel
  • Roubeau, Olivier
  • Maspoch, Daniel
  • Gascón, Ignacio
19 pages. -- Figure S1. Absorption spectra (450-650 nm range) of OHRhMOP dissolved in methanol/chloroform (1:5) and the product formed after the addition of ca. 3.8×10- 3 mmol of diz to a dispersion of ca. 1.5×10-4 mmol OHRhMOP in 2 mL of THF. The maximum absorption at ca. 552 nm after diz addition indicates that all the dirhodium paddlewheels of OHRhMOP are coordinated to one diz, obtaining OHRhMOP(diz)12. -- Figure S2. Raw GIXD data for C12RhMOP (left), HRhMOP(diz)12 (middle) and OHRhMOP (right), at the indicated pressures. The water subphase data are shown as grey lines. Insets highlight the q range exhibiting the Bragg peak of alkyl chains ordering, in the case of C12RhMOP and HRhMOP(diz)12. -- Figure S3. Top: high q portion of GIXD data for C12RhMOP (left, collapsed) and HRhMOP(diz)12 (right, 10 mN/m), integrated over only the bottom half, top half, bottom first quarter or the whole detector, as indicated. The Bragg peak at ca. 1.51 Å-1 characteristic of alkyl chain interdigitation/order is not present in the data at higher qz. Bottom: intensity of the alkyl chains Bragg rod vs. qz, C12RhMOP. -- Figure S4. GIXD data for OHRhMOP at the gas-water interface at 10 mN/m, after correction for the water subphase. The red line is the diffusion form factor of coreshell spheres with an empty (SLD = 0) core of 5 Å radius and a dense shell of 11.5 Å thickness (SLD = 2x10-6 Å-2), considering a pinhole instrumental smearing dQ/Q of 5 %, that can only account for the two stronger peaks at 0.63 and 0.87 Å–1. (left), HRhMOP(diz)12 (right) at 10 mN/m. -- Scheme S1. LS sequential deposition of MOP monolayers onto PTMSP supports. One MOP monolayer is deposited each time that the support contacts the film formed at the air-liquid interface. After each transfer, the film is dried with N2 at ambient temperature and the transference is repeated as many times as necessary to obtain films with the desired number of Rh-MOP monolayers. -- Figure S5. UV-Vis spectra for the three Rh-MOPs studied. Solution spectra and LS films deposited onto quartz substrates are compared for each Rh-MOP. -- Figure S6. Representative AFM topography images from HRhMOP(oiz)12 and HRhMOP(diz)12 LS films transferred onto quartz substrates at 20 mN/m used to evaluate the film thickness. -- Figure S7. Representative AFM topography image of quartz, left, and a Si(100), right, substrates before MOP film deposition. -- Figure S8. Representative AFM topography and phase images from a OHRhMOP LS film transferred at 2 mN/m and evaluation of film thickness and defects dimensions. -- Figure S9. Linear increase of the absorbance at 214 nm vs. the number of Rh- MOP LS layers transferred at 20 mN/m onto quartz substrates (● HRhMOP(oiz)12;■: HRhMOP(diz)12). -- Figure S10. Rh-MOP mass deposited onto QCM disks at 20 mN/m versus the number of LS layers transferred (■: C12RhMOP;▲: HRhMOP(oiz)12, ●: HRhMOP(diz)12). -- Figure S11. Brewster Angle Microscope (BAM) images obtained during OHRhMOP + diz film compression at indicated surface pressures and the corresponding areas per molecule. OHRhMOP + diz different ratios were used in the experiments (1:25 in top images, and 1:50 in bottom images, respectively). -- Figure S12. Characterization of the films obtained from OHRhMOP + diz (1:25) reaction at the air-liquid interface: a) UV-Vis spectra from sequential deposition of LS films transferred onto quartz at 20 mN/m. Inset: Linear increase of the absorbance at 221nm vs. the number of LS layers transferred. b) Mass deposited onto QCM disks vs. the number of LS layers transferred (red line: OHRhMOP +diz; blue line: HRhMOP(diz)12, green line: C12RhMOP). -- Figure S13: UV-Vis spectra from HRhMOP(diz)12 LS films deposited onto quartz at 20 mN/m before and after the acid treatment: 1 layer (continuous line) and 3 layers (dashed line). -- Figure S14. Representative AFM topography and phase images from a HRhMOP(diz)12 LS film (1 layer) deposited onto Si (100) before and after acid treatment with HCl vapors. -- Table S1: Parameters of the components used to simulate the Rh 3d high resolution XPS spectra (see Figure 9) of OHRhMOP (powder), 1 LS film deposited at 20 mN/m after OHRhMOP + diz (1:25) reaction at the air-liquid interface and drop-cast film obtained after OHRhMOP + diz (1:25) reaction in THF. -- Table S2: Comparison of the performance of MOP and PIM ultrathin films (30 LS monolayers deposited onto PTMSP membranes) in CO2/N2 (10/90 in volume) separation at 35 ºC. At least 2 different samples were fabricated and measured to provide the corresponding error estimations., The formation of ultrathin films of Rh-based porous metal–organic polyhedra (Rh-MOPs) by the Langmuir–Blodgett method has been explored. Homogeneous and dense monolayer films were formed at the air–water interface either using two different coordinatively alkyl-functionalized Rh-MOPs (HRhMOP­(diz)12 and HRhMOP­(oiz)12) or by in situ incorporation of aliphatic chains to the axial sites of dirhodium paddlewheels of another Rh-MOP (OHRhMOP) at the air–liquid interface. All these Rh-MOP monolayers were successively deposited onto different substrates in order to obtain multilayer films with controllable thicknesses. Aliphatic chains were partially removed from HRhMOP­(diz)12 films post-synthetically by a simple acid treatment, resulting in a relevant modification of the film hydrophobicity. Moreover, the CO2/N2 separation performance of Rh-MOP-supported membranes was also evaluated, proving that they can be used as selective layers for efficient CO2 separation., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/312528
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312528
HANDLE: http://hdl.handle.net/10261/312528
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312528
PMID: http://hdl.handle.net/10261/312528
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312528
Ver en: http://hdl.handle.net/10261/312528
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/312528

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329461
Dataset. 2022

SUPPORTING INFORMATION FOR THE MANUSCRIPT INFLUENCE OF THE SURFACE CHEMISTRY OF METAL-ORGANIC POLYHEDRA IN THEIR ASSEMBLY INTO ULTRATHIN FILMS FOR GAS SEPARATION

  • Tejedor, Inés
  • Andrés, Miguel A.
  • Carné-Sánchez, Arnau
  • Arjona, Mónica
  • Pérez-Miana, Marta
  • Sánchez-Laínez, Javier
  • Coronas, Joaquín
  • Fontaine, Philippe
  • Goldmann, Michel
  • Roubeau, Olivier
  • Maspoch, Daniel
  • Gascón, Ignacio
UV–vis characterization of OHRhMOP alkyl functionalization with diz in solution; GIXD characterization during MOP film formation; schematic representation of MOP LS film deposition; UV–vis and AFM characterization of MOP films deposited onto quartz substrates; Rh-MOP mass deposited onto QCM disks; BAM images obtained during OHRhMOP + diz film formation; UV–vis and AFM characterization of the post-synthetic modification of MOP films; parameters used to simulate the Rh 3d high-resolution XPS spectra of MOP films; and comparison of the performance of MOP and PIM ultrathin films in CO2/N2 separation., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/329461
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329461
HANDLE: http://hdl.handle.net/10261/329461
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329461
PMID: http://hdl.handle.net/10261/329461
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329461
Ver en: http://hdl.handle.net/10261/329461
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329461

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329943
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. FUNCT. MATER., DOI: 10.1002/ADFM.202112902 ANTIBACTERIAL FILMS BASED ON MOF COMPOSITES THAT RELEASE IODINE PASSIVELY OR UPON TRIGGERING BY NEAR- INFRARED LIGHT

  • Han, Xu
  • Balcerzak, Mateusz
  • Hernando Moriones, Oscar
  • Cano-Sarabia, Mary
  • Cortés, Pilar
  • Bastús, Neus G.
  • Puntes, Víctor F.
  • Llagostera, Montserrat
  • Imaz, Inhar
  • Maspoch, Daniel
18 pages. -- Figure S1. (a) Bright field STEM image of the synthesized AuNRs. (b) Bright field STEM image of the AuNR@SiO2 after the first silica-shell coating. -- Figure S2. (a) STEM micrographs of synthesized AuNR@UiO-66 composite before (left) and after (right) exposure to iodine gas at 75 °C for 3 hours. Note that the AuNRs were etched after having been exposed to the iodine. (b) STEM micrographs of the AuNR@SiO2@UiO-66 composite before (left) and after (right) exposure to iodine at 75 °C for 96 hours, confirming the stability of the silica-coated AuNRs. Scale bar: 500 nm. -- Figure S3. N2-sorption isotherm measurements at 77 K, and corresponding BET plots, for UiO-66 microbeads (a) and AuNR@SiO2@UiO-66 microbeads (b). -- Table S1. Summary of the maximum temperatures reached by each studied material upon irradiation with near-infrared lasers of different intensities. -- Figure S4. (a) Plot of time vs. temperature for AuNR@SiO2@UiO-66 microbeads irradiated for 1 minute with near infrared light at an intensity of 224 mW cm-2. (b) Thermal imaging of the UiO-66 (leftmost) when irradiated at 1000 mW cm-2, and AuNR@SiO2@UiO-66 microbeads when irradiated with an intensity of 52 mW cm-2 (left), 224 mW cm-2 (middle) and 1000 mW cm-2 (right). -- Figure S5. Thermogravimetric analysis curves for pristine UiO-66 microbeads (blue), iodineloaded UiO-66 microbeads (black), and iodine-loaded AuNR@SiO2@UiO-66 microbeads (red). -- Figure S6. (a) PXRD spectra of pristine UiO-66 (black), pristine AuNR@SiO2@UiO-66 (red), UiO-66 after desorption of iodine (blue), and AuNR@SiO2@UiO-66 after desorption of iodine (green). (b) HAADF-STEM micrograph of AuNR@SiO2@UiO-66 after 96-hour exposure to iodine at 75 °C. Scale bar: 100 nm. -- Figure S7. Release of iodine from I2@UiO-66 microbeads (black) and I2@AuNR@SiO2@UiO-66 microbeads (red), without any laser irradiation. Inset: zoomed section of graph. -- Figure S8. FE-SEM micrographs of cross-sections of the composite films containing AuNR@SiO2@UiO-66 microbeads at 0% (a), 8% (b), 25% (c) and 46 (d)% (w/w). -- Figure S9. TGA curves of the iodine-loaded composite films containing AuNR@SiO2@UiO- 66 microbeads at 0% (black), 8% (red), 25% (blue) and 46% (green) (w/w). -- Figure S10. Iodine release over time from the composite films containing AuNR@SiO2@UiO-66 microbeads at 46% (a) and 25% (b) (w/w), without any laser irradiation. -- Figure S11 (a) Stepwise release of iodine from a composite film containing I2@AuNR@SiO2@UiO-66 microbeads at 25% (w/w) irradiated with NIR light at 224 mW cm-2 and subjected to on/off switching. (b) Zoom on the stepwise release after its stabilization at the fifteenth cycle. -- Figure S12. Growth-inhibition zones induced by I2@UiO-66 microbeads (a, b) and I2@AuNR@SiO2@UiO-66 microbeads (c, d) against E. coli (a, c) or S. aureus (b, d) cultures, either after near-infrared light irradiation (left) or without irradiation (right). Ø: diameter of growth-inhibition zone. Disc diameter: 6 mm. -- Figure S13. Growth-inhibition zones induced by square sections of composite films containing iodine-loaded AuNR@SiO2@UiO-66 at 8% (a), 25% (b) and 46% (c) (w/w), against E. coli cultures, either after near-infrared light irradiation (left) or without irradiation (right). Ø: diameter of growth-inhibition zone. Film size: 1 cm2. Values are the average of at least five replicates ± standard deviation. -- Table S2. Growth-inhibition of composite films prepared at different iodine-containing microbead-loadings (8%, 25% or 46%) and tested on E. coli cultures., ICN2 is supported by the Severo Ochoa program from the Spanish MINECO (Grant No. SEV-2017-0706), Peer reviewed

DOI: http://hdl.handle.net/10261/329943
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329943
HANDLE: http://hdl.handle.net/10261/329943
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329943
PMID: http://hdl.handle.net/10261/329943
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329943
Ver en: http://hdl.handle.net/10261/329943
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/329943

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330430
Dataset. 2022

SUPPORTING INFORMATION COLORATION IN SUPRAPARTICLES ASSEMBLED FROM POLYHEDRAL METALORGANIC FRAMEWORK PARTICLES

  • Wang, Junwei
  • Liu, Yang
  • Bleyer, Gudrun
  • Goerlitzer, Eric S. A.
  • Englisch, Silvan
  • Przybilla, Thomas
  • Mbah, Chrameh Fru
  • Engel, Michael
  • Spiecker, Erdmann
  • Imaz, Inhar
  • Maspoch, Daniel
  • Vogel, Nicolas
28 pages. -- PDF file includes: Experimental Procedures; Simulation of hard polyhedral particles in spherical confinement. -- Figure S1. (a) Scheme and FESEM image of an as-synthesized C-ZIF-8 particle, highlighting the edge length (f). Scale bar: 500 nm. (b) Left: Representative FE-SEM image of C-ZIF-8 particles. Scale bar: 1 μm. Middle: Size-distribution histogram of as-synthesized C-ZIF-8 particles with a mean f of 191 ± 9 nm. Right: PXRD patterns of simulated (black) and as-synthesized C-ZIF-8 particles (red). -- Figure S2. (a) Scheme and FESEM image of an as-synthesized TRD-ZIF-8 particle, highlighting the particle size (f) and edge length (x). Scale bar: 500 nm. (b-e) TRD ZIF-8 particles (t= 0.68) with a mean f of 181 ± 9 nm (b), 198 ± 10 nm (c), 229 ± 9 nm (d) and 247 ± 10 nm (e). Left: Representative FE-SEM images; Middle: Size-distribution histograms; and Right: PXRD patterns of simulated (black) and assynthesized TRD-ZIF-8 particles (red). -- Figure S3. (a) Scheme and FESEM image of an as-synthesized RD-ZIF-8 particle, highlighting the particle size (f). Scale bar: 500 nm. (b-e) RD ZIF-8 particles with a mean f of 246 ± 12 nm (b), 267 ±12 nm (c), and 293 ± 13 nm (d). Left: Representative FE-SEM images; Middle: Size-distribution histograms; and Right: PXRD patterns of simulated (black) and as-synthesized RD-ZIF-8 particles (red). -- Figure S4. (a) Scheme and FESEM image of an as-synthesized O-UiO-66 particle, highlighting the edge length of particles (f). Scale bar: 500 nm. O-UiO-66 particles a mean f of 194 ± 12 nm (b), 238 ± 13 nm (c), and 247 ± 13 nm (d). Left: Representative FE-SEM images; Middle: Size-distribution histograms; and Right: PXRD patterns of simulated (black) and as-synthesized RD-ZIF-8 particles (red). -- Figure S5. Representative FESEM images of polydisperse C-ZIF-8 (a) and O-UiO-66 (b) supraparticles prepared by shaking emulsifying, with a size of 21 ± 5.6 μm (26% polydispersity) and 9.9 ± 3.4 μm (34% polydispersity, approximately 500 counts), respectively. -- Figure S6. Representative FESEM images of monodispersed RD-ZIF-8 (a) and TRD-ZIF-8 (b) supraparticles prepared using a droplet-based microfluidic device, with a size of 20.1 ± 0.6 μm (3% polydispersity) and 10.4 ± 0.5 μm (5% polydispersity, approximately 200 counts), respectively. -- Figure S7. Transmissive X-ray image of MOF supraparticles of a) RD-ZIF-8, showing few onion-like layers near the surface; b) TRD-ZIF-8, showing thick onion-like layers, as well as some lattice fringes; c) C-ZIF-8, showing thick onion-like layers, as well as some lattice fringes; and d) O-UiO-66 particles, showing only little onion-like layer structures. -- Figure S8. Cross-section of RD-ZIF-8 supraparticles revealed by focused-ion beam milling. -- Figure S9. Cross-section of TRD-ZIF-8 supraparticles revealed by focused-ion beam milling. -- Figure S10. Cross-section of C-ZIF-8 supraparticles revealed by focused-ion beam milling. -- Figure S11. Cross-section of O-UiO-66 supraparticles revealed by focused-ion beam milling. -- Figure S12. A TRD-ZIF-8 supraparticle exhibiting local five-fold symmetric surface pattern, marked with blue colour. -- Figure S13. Cross-sectional images of simulated supraparticles of hard polyhedra in spherical confinement. -- Figure S14. Photograph of the self-assembled superstructures resulting from the centrifugation of different aqueous colloidal MOF particles (from left to right: RD-ZIF-8, TRD-ZIF-8, C-ZIF-8 and OUiO-66). -- Figure S15. Relationship between MOF particle size of different shapes and layer distance. -- Figure S16. Optical setup to measure reflectance spectra directly from MOF supraparticles suspended in liquid in a glass vial. -- Figure S17. Angle-dependent reflection spectra of four types of MOF supraparticles measured directly from liquid suspension. -- Figure S18. Shift of the reflectance peak with increasing viewing angle for four types of MOF supraparticles. -- Figure S19. Buckled RD-ZIF-8 supraparticles. 1.0 mL 1 wt% Lutensol TO8 surfactant is added to 0.5 mL 2 wt% RD-ZIF-8 particle dispersion. -- Figure S20. Angle-dependent reflection spectra of buckled MOF supraparticles measured directly from suspension. -- Figure S21. Hypothesized surface grating effects of MOF supraparticles. -- Figure S22. Buckled RD-ZIF-8 supraparticles exhibit ordered surface features, visualized in scanning electron microscopy. -- Figure S23. The surface packing of RD ZIF-8 supraparticles shows a sawtooth groove profile, as seen in scanning electron microscopy., ICN2 is supported by the Severo Ochoa program from the Spanish MINECO (Grant No. SEV-2017-0706)., Peer reviewed

DOI: http://hdl.handle.net/10261/330430
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330430
HANDLE: http://hdl.handle.net/10261/330430
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330430
PMID: http://hdl.handle.net/10261/330430
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330430
Ver en: http://hdl.handle.net/10261/330430
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330430

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330527
Dataset. 2022

MULTICOMPONENT, FUNCTIONALIZED HKUST‑1 ANALOGUES ASSEMBLED VIA RETICULATION OF PREFABRICATED METAL–ORGANIC POLYHEDRAL CAVITIES [DATASET]

  • Khobotov-Bakishev, Akim
  • Baeckmann, Cornelia von
  • Ortín-Rubio, Borja
  • Hernández-López, Laura
  • Cortés Martínez, Alba
  • Martínez Esaín, Jordi
  • Gándara Barragán, Felipe
  • Juanhuix, Judith
  • Platero Prats, Ana E.
  • Faraudo, Jordi
  • Carné-Sánchez, Arnau
  • Maspoch, Daniel
89 pages. -- PDF file includes: S1. Materials and methods; S1.1. Materials and characterization; S1.2. Experimental methods; S1.2.1. Synthesis of COOH-RhMOP, (Br)btc, (NO2)btc and (COOH)btc; S1.2.2. Stability of COOH-RhMOP under solvothermal conditions; S1.2.3. Synthesis of RhCu-btc-HKUST-1, RhCu-(Br)btc-HKUST-1, RhCu-(NO2)btc-HKUST-1, RhCu-(NH2)btc-HKUST-1 and RhCu-(COOH)btc-HKUST-1; S.1.2.4. Blank reactions for RhCu-btc-HKUST-1; S.1.2.5. Acidic disassembly of RhCu-btc-HKUST-1; S.1.2.6. Acidic digestion of RhCu-(Br)btc-HKUST-1, RhCu-(NO2)btc-HKUST-1, RhCu-(NH2)btc-HKUST-1 and RhCu-(COOH)btc-HKUST-1; S1.2.7. Study of the hydrolytic stability of RhCu-btc-HKUST-1 and Cu(II)-HKUST- 1; S1.2.8 Study of the methylene blue removal with RhCu-btc-HKUST-1 and Cu(II)-HKUST-1; S1.2.9. Study of the catalytic activity of RhCu-btc-HKUST-1 and RhCu-(COOH)btc-HKUST-1; S1.3. Computational methods; S2. Characterization of RhCu-btc-HKUST-1; S3. Characterization of Cu(II)-HKUST-1; S4. Hydrolytic stability study of RhCu-btc-HKUST-1 and Cu(II)-HKUST-1; S4.1. DFT calculations of Rh(II) and Cu(II) paddlewheels in water; S5. Characterization of RhCu-(Br)btc-HKUST-1; S6. Characterization of RhCu-(NO2)btc-HKUST-1; S7. Characterization of RhCu-(NH2)btc-HKUST-1; S8. Characterization of RhCu-(COOH)btc-HKUST-1., Metal–organic frameworks (MOFs) assembled from multiple building blocks exhibit greater chemical complexity and superior functionality in practical applications. Herein, we report a new approach based on using prefabricated cavities to design isoreticular multicomponent MOFs from a known parent MOF. We demonstrate this concept with the formation of multicomponent HKUST-1 analogues, using a prefabricated cavity that comprises a cuboctahedral Rh­(II) metal–organic polyhedron functionalized with 24 carboxylic acid groups. The cavities are reticulated in three dimensions via Cu­(II)-paddlewheel clusters and (functionalized) 1,3,5-benzenetricarboxylate linkers to form three- and four-component HKUST-1 analogues., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/330527
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330527
HANDLE: http://hdl.handle.net/10261/330527
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330527
PMID: http://hdl.handle.net/10261/330527
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330527
Ver en: http://hdl.handle.net/10261/330527
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330527

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330583
Dataset. 2022

SUPPORTING INFORMATION PH-TRIGGERED REMOVAL OF NITROGENOUS ORGANIC MICROPOLLUTANTS FROM WATER BY USING METAL-ORGANIC POLYHEDRA

  • Hernández-López, Laura
  • Cortés Martínez, Alba
  • Parella, Teodor
  • Carné-Sánchez, Arnau
  • Maspoch, Daniel
85 pages. -- PDF file contents: S1. Materials and experimental methods; S1.1. Material; S1.2. Experimental methods; S1.2.1. Synthesis of COOHRhMOP/COONaRhMOP; S1.2.2. pH-triggered pollutant removal methodology; S2. COOHRhMOP viability for pollutant removal; S2.1. Precipitation tests; S3. Coordination tests of benzotriazole and optimization of the pollutant removal cycle; S3.1. Coordination tests; S3.2. Benzotriazole quantification. Calibration curve; S3.3. Removal efficiency calculation. General methodology; S3.4. Blank experiments; S3.5 Optimization of the precipitation pH; S3.6 Interaction pH; S3.7 Impact of pollutant diffusion constrains on the removal efficiency; S3.7.1 Time-dependent uptake tests in homogeneous conditions; 3.7.2 Time-dependent uptake tests in heterogeneous conditionsS3.8 Removal performance at different concentrations. Uptake curve; S3.9 Regeneration and reusability of COONaRhMOP; S3.10 Stability test; S3.11 Implementation of filtration to the pH-triggered pollutant removal methodology; S3.12 Removal of benzotriazole from tap water; S.4. Expanding the scope. Removal of pollutants containing pH-sensitive coordinating groups; S.4.1 Optimization of the precipitation pH; S.4.2. Benzothiazole removal; S.4.2.1. Benzothiazole coordination test; S.4.2.2. Benzothiazole quantification. Calibration curve; S.4.2.3. Blank experiment; S.4.2.4. Removal performance at different concentrations. Uptake curve; S.4.2.5. Regeneration and reusability of COONaRhMOP; S.4.2.6. Stability test; S.4.3. Naphthylamine removal; S.4.3.1. Naphthylamine coordination test; S.4.3.2. Naphthylamine quantification. Calibration curve; S.4.3.3. Blank experiment; S.4.3.4. Removal performance at different concentrations. Uptake curve; S.4.3.5. Regeneration and reusability of COONaRhMOP; S.4.3.6. Stability test; S.4.4. Isoquinoline removal; S.4.4.1. Isoquinoline coordination test; S.4.3.2. Isoquinoline quantification. Calibration curve; S.4.4.3. Blank experiment; S.4.4.4. Removal performance at different concentrations. Uptake curve; S.4.4.5. Regeneration and reusability of COONaRhMOP; S.4.4.6. Stability test; S.5. Simultaneous removal of multiple nitrogenous organic micropollutants from an aqueous solution; S.5.1. Coordination test; S.5.2. Removal performance; S.5.3; Regeneration of COONaMOP; S.5.4. Stability test., ICN2 is supported by the Severo Ochoa programme from the Spanish MINECO (grant no. SEV-2017-0706)., Peer reviewed

DOI: http://hdl.handle.net/10261/330583
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330583
HANDLE: http://hdl.handle.net/10261/330583
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330583
PMID: http://hdl.handle.net/10261/330583
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330583
Ver en: http://hdl.handle.net/10261/330583
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330583

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330636
Dataset. 2022

SUPPORTING INFORMATION FOR ADV. SCI., DOI: 10.1002/ADVS.202104643 ULTRA-LARGE FREE-STANDING IMINE-BASED COVALENT ORGANIC FRAMEWORK MEMBRANES FABRICATED VIA COMPRESSION

  • Martín-Illán, Jesús Á.
  • Suárez, José Antonio
  • Gómez-Herrero, Julio
  • Ares, Pablo
  • Gallego-Fuente, Daniel
  • Cheng, Youdong
  • Zhao, Dan
  • Maspoch, Daniel
  • Zamora, Félix
26 pages. -- Figure S1. PXRD patterns of TAPB-BTCA-MCOFs at different pressures in perpendicular mode. -- Figure S2. Photographs highlighting the flexible COF-membrane. --Table S1. Experimental elemental analysis data of COF aerogels (AG) and COFmembranes (M). -- Table S2. Physical features of the COF aerogels and membranes. -- Figure S3. ATR-FT-IR spectra of TAPB-BTCA-AGCOF (blue-line) and TAPB-BTCAMCOF (green-line). -- Figure S4. ATR-FT-IR spectra of PPDA-BTCA-AGCOF (blue-line) and PPDA-BTCAMCOF (green-line). -- Figure S5. ATR-FT-IR spectra of TAPB-PDA-AGCOF (blue-line) and TAPB-PDAMCOF (green-line). -- Figure S6. Solid state 13C NMR spectrum of TAPB-BTCA-MCOF. -- Table S3. Peaks assignment of solid state 13C NMR spectrum of TAPB-BTCA-MCOF. -- Figure S7. Solid-state 13C CP-MAS NMR spectrum of PPDA-BTCA-MCOF. -- Table S4. Peaks assignment of solid state 13C NMR spectrum of PPDA-BTCA-MCOF. - Figure S8. Solid-state 13C CP-MAS NMR spectrum for TAPB-PDA-MCOF. -- Table S5. Peaks assignment of solid state 13C NMR spectrum of TAPB-PDA-MCOF. -- Figure S9. TGA traced for TAPB-BTCA-AGCOF (black) and TAPB-BTCA-MCOF (red). 16 % volatile elements. -- Figure S10. TGA traced for PPDA-BTCA-AGCOF (black) and PPDA-BTCA-MCOF (red). 14 % volatile elements. -- Figure S11. TGA traced for TAPB-PDA-AGCOF (black) and TAPB-PDA-MCOF (red). 9 % volatile elements. -- Figure S12. PXRD patterns of (A) TAPB-BTCA-MCOF, (B) PPDA-BTCA-MCOF and (C) TAPB-PDA-MCOF before (blue) and after treatment with toluene (red), hexane (dark-yellow), dimethylformamide (black), 14 м NaOH (dark cyan) and 12 м HCl (green). -- Figure S13. AFM Topography images of TAPB-BTCA-MCOF (A-D), PPDA-BTCAMCOF (B-E) and TAPB-PDA-MCOF (C-F) membranes. A, B and C without AcOH and D, E and F with AcOH. -- Figure S14. Histograms showing Young’s modulus distribution of the membranes with AcOH. -- Figure S15. Histograms showing Young’s modulus distribution of the membranes without AcOH. -- Figure S16. (A, B, C) Representative Young’s modulus maps of the TAPB-BTCA-MCOF, PPDA-BTCA-MCOF and TAPB-PDA-MCOF membranes respectively, and the corresponding AFM topographical images of the same areas (D, E, F). -- Figure S17. N2 adsorption–desorption isotherm of TAPB-BTCA-AGCOF (black line) and TAPB-BTCA-MCOF (red line). -- Figure S18. N2 adsorption–desorption isotherms of PPDA-BTCA-AGCOF (black line) and PPDA-BTCA-MCOF (red line). -- Figure S19. N2 adsorption–desorption isotherms of TAPB-PDA-AGCOF (black line) and TAPB-PDA-MCOF (red line). -- Table S6. BET surface area values for COF-aerogels (AG) and COF-membranes (M). -- Figure S20. Cumulative and pore size-distribution of TAPB-BTCA-MCOF. -- Figure S21. Cumulative and pore size-distribution of PPDA-BTCA-MCOF. -- Figure S22. Cumulative and pore size-distribution of TAPB-PDA-MCOF. -- Figure S23. CO2 uptake capacity isotherms of TAPB-BTCA-AGCOF (black line) and TAPB-BTCA-MCOF (red line). -- Figure S24. CO2 uptake capacity isotherms of PPDA-BTCA-AGCOF (black line) and PPDA-BTCA-MCOF (red line). -- Figure S25. CO2 uptake capacity isotherms of TAPB-PDA-AGCOF (black line) and TAPB-PDA-MCOF (red line). -- Figure S26. CH4 uptake capacity isotherms of TAPB-BTCA-AGCOF (black line) and TAPB-BTCA-MCOF (red line). -- Figure S27. CH4 uptake capacity isotherms of PPDA-BTCA-AGCOF (black line) and PPDA-BTCA-MCOF (red line). -- Figure S28. CH4 uptake capacity isotherms of TAPB-PDA-AGCOF (black line) and TAPB-PDA-MCOF (red line). -- Figure S29. Summary of CO2 adsorption capacities reported for different COFs at 273 K, the best performance MOF (Mg2(dodbc) at 298 K and zeolite ([Na10.2KCs0.8]-LTA at 1 bar. -- Figure S30. Summary of CH4 adsorption capacities for the best 2D-COF at low pressure (1 bar). -- Table S7. Summary of the uptake values for the COF-aerogels (AG) and COF-membranes (M). -- Figure S31. Study of the gas permeability and separation selectivity at different transmembrane pressures for (A) CO2/CH4 and (B) CO2/N2 in TAPB-BTCA-MCOF. -- Figure S32. Study of the gas permeability and separation selectivity under different temperatures for (A) CO2/CH4 and (B) CO2/N2 in TAPB-BTCA-MCOF. -- Figure S33. Evaluation of the long-term stability of TAPB-BTCA-MCOF for the separation of CO2/CH4 mixtures. -- Table S8. CO2/N2 upper bound of commercial membranes and membranes made of MOFs, zeolites, porous organic polymers and COFs. -- Table S9. CO2/CH4 upper bound of commercial membranes and membranes made of MOFs, zeolites, porous organic polymers and COFs. -- Table S10. Summary of the performance of COF-membranes for CO2/CH4 and CO2/N2 separation, ICN2 was supported by the Severo Ochoa program from the Spanish MINECO (Grant No. SEV-2017-0706)., Peer reviewed

DOI: http://hdl.handle.net/10261/330636
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330636
HANDLE: http://hdl.handle.net/10261/330636
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330636
PMID: http://hdl.handle.net/10261/330636
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330636
Ver en: http://hdl.handle.net/10261/330636
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/330636

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336232
Dataset. 2023

AMMONIA CAPTURE IN RHODIUM(II)-BASED METAL–ORGANIC POLYHEDRA VIA SYNERGISTIC COORDINATIVE AND H‑BONDING INTERACTIONS [DATASET]

  • Carné-Sánchez, Arnau
  • Martínez Esaín, Jordi
  • Rookard, Tanner
  • Flood, Christopher J.
  • Faraudo, Jordi
  • Stylianou, Kyriakos C.
  • Maspoch, Daniel
30 pages. Table of Contents: S1. Materials and experimental methods: S1.1 Materials; S1.2 Experimental methods. -- S2. Computational methods. -- S3. Characterization of Rh-MOPs used as adsorbents for NH3. -- S4. NH3 uptake in H-RhMOP. -- S5. Computer simulation of the interaction between H-RhMOP and NH3: S5.1. DFT calculations of the interaction between Rh2(Ac)4 and NH3; S5.1.2. DFT calculations of the interaction between Rh2(Ac)4, NH3 and H2O; S5.2. Computer simulation of the interaction between H-RhMMOP and NH3; S5.2.1. Parametrization of the Force Field from DFT calculations; S5.2.2. Molecular dynamic simulations of the interaction between H-RhMOP and NH3. -- S6. FTIR spectroscopy of ammonia-loaded H-RhMOP. -- S7. NH3 uptake in Rh2(Ac)4. -- S8. Digital photographs showing the regeneration of H-RhMOP. -- S9. NH3 uptake in OH-RhMOP and C12-RhMOP. -- S10. Computer simulation of the interaction between functionalized Rh-MOPs and NH3: S10.1 OH-RhMOP and NH3; S10.2 C12-RhMOP and NH3., Ammonia (NH3) is among the world’s most widely produced bulk chemicals, given its extensive use in diverse sectors such as agriculture; however, it poses environmental and health risks at low concentrations. Therefore, there is a need for developing new technologies and materials to capture and store ammonia safely. Herein, we report for the first time the use of metal–organic polyhedra (MOPs) as ammonia adsorbents. We evaluated three different rhodium-based MOPs: [Rh2(bdc)2]12 (where bdc is 1,3-benzene dicarboxylate); one functionalized with hydroxyl groups at its outer surface [Rh2(OH-bdc)2]12 (where OH-bdc is 5-hydroxy-1,3-benzene dicarboxylate); and one decorated with aliphatic alkoxide chains at its outer surface [Rh2(C12O-bdc)2]12 (where C12O-bdc is 5-dodecoxybenzene-1,3-benzene dicarboxylate). Ammonia-adsorption experiments revealed that all three Rh-MOPs strongly interact with ammonia, with uptake capacities exceeding 10 mmol/gMOP. Furthermore, computational and experimental data showed that the mechanism of the interaction between Rh-MOPs and ammonia proceeds through a first step of coordination of NH3 to the axial site of the Rh(II) paddlewheel cluster, which triggers the adsorption of additional NH3 molecules through H-bonding interaction. This unique mechanism creates H-bonded clusters of NH3 on each Rh(II) axial site, which accounts for the high NH3 uptake capacity of Rh-MOPs. Rh-MOPs can be regenerated through their immersion in acidic water, and upon activation, their ammonia uptake can be recovered for at least three cycles. Our findings demonstrate that MOPs can be used as porous hosts to capture corrosive molecules like ammonia, and that their surface functionalization can enhance the ammonia uptake performance., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/336232
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336232
HANDLE: http://hdl.handle.net/10261/336232
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336232
PMID: http://hdl.handle.net/10261/336232
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336232
Ver en: http://hdl.handle.net/10261/336232
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/336232

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337343
Dataset. 2023

SUPPORTING INFORMATION A MESOPOROUS ZR-BASED METAL-ORGANIC FRAMEWORK DRIVEN BY THE ASSEMBLY OF AN OCTATOPIC LINKER

  • Ortín-Rubio, Borja
  • Perona-Bermejo, Cristina
  • Suárez, José Antonio
  • Carmona, Francisco J.
  • Gándara Barragán, Felipe
  • Navarro, Jorge A. R.
  • Juanhuix, Judith
  • Imaz, Inhar
  • Maspoch, Daniel
17 pages. -- S1. Materials, methods and characterization. -- S1.1.Materials. -- S1.2.Methods. -- S1.3. Characterization. -- S2. Characterization of BCN-348. -- S2.1. Single-crystal X-ray diffraction. -- S2.2. Powder X-Ray Diffraction. -- S2.3. N2 sorption. -- S2.4. Thermogravimetric Analysis. -- S3. Heterogeneous degradation of simulant diisopropylfluorophosphate (DIFP) in unbuffered solution. -- S3.1. Gas Chromatographic (GC) studies. -- S3.2. 1 H and 31P-NMR studies. -- S4. Reference, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337343
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337343
HANDLE: http://hdl.handle.net/10261/337343
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337343
PMID: http://hdl.handle.net/10261/337343
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337343
Ver en: http://hdl.handle.net/10261/337343
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337343

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337448
Dataset. 2023

SUPPORTING INFORMATION IMPROVEMENT OF CARBON DIOXIDE ELECTROREDUCTION BY CRYSTAL SURFACE MODIFICATION OF ZIF-8

  • Zhang, Ting
  • Liu, Hong
  • Han, Xu
  • Biset-Peiró, Martí
  • Yang, Yunhui
  • Imaz, Inhar
  • Maspoch, Daniel
  • Yang, Bo
  • Morante, Joan Ramón
  • Arbiol, Jordi
12 pages. -- Fig. S1-S17. -- Table S1. Faradaic Efficiency of the reported MOFs-based electrocatalysts for CO2 electroreduction., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/337448
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337448
HANDLE: http://hdl.handle.net/10261/337448
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337448
PMID: http://hdl.handle.net/10261/337448
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337448
Ver en: http://hdl.handle.net/10261/337448
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/337448

Buscador avanzado