Resultados totales (Incluyendo duplicados): 47
Encontrada(s) 5 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331565
Dataset. 2023

RAW DATA FOR MANUSCRIPT PUBLISHED AT NANOMATERIALS, ENTITLED: ASYMMETRICAL PLASMON DISTRIBUTION IN HYBRID AUAG HOLLOW/SOLID CODED NANOTUBES

  • Genç, Aziz
  • Arbiol, Jordi
.dm3 TEM, STEM and EELS raw data, Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331565
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331565
HANDLE: http://hdl.handle.net/10261/331565
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331565
PMID: http://hdl.handle.net/10261/331565
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331565
Ver en: http://hdl.handle.net/10261/331565
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331565

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331703
Dataset. 2022

SUPPLEMENTARY INFORMATION SUB-NANOMETER MAPPING OF STRAIN-INDUCED BAND STRUCTURE VARIATIONS IN PLANAR NANOWIRE CORE-SHELL HETEROSTRUCTURES

  • Martí-Sànchez, Sara
  • Botifoll, Marc
  • Oksenberg, Eitan
  • Koch, Christian
  • Borja, Carla
  • Spadaro, Maria Chiara
  • Giulio, Valerio di
  • Ramasse, Quentin M.
  • García de Abajo, F. Javier
  • Joselevich, Ernesto
  • Arbiol, Jordi
52 pages. -- Supplementary Note 1. Growth directions, plane interactions and associated mismatches. -- Supplementary Note 2. Intermediate cases (gradual bending). -- Supplementary Note 3. Strain tensor maps (𝜀ij). -- Supplementary Note 4. Atomic modelling on non-faceted cores. -- Supplementary Note 5. Additional details on strain relaxation mechanisms and shell rotation. -- Supplementary Note 6. Details on the Core-shell misfit dislocations. -- Supplementary Note 7. Simulations on VEEL spectra. -- Supplementary Note 8. Methodology for band gap mapping., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331703
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331703
HANDLE: http://hdl.handle.net/10261/331703
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331703
PMID: http://hdl.handle.net/10261/331703
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331703
Ver en: http://hdl.handle.net/10261/331703
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331703

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331792
Dataset. 2022

SUPPORTING INFORMATION CONTROLLED OXYGEN DOPING IN HIGHLY DISPERSED NI-LOADED G-C3N4 NANOTUBES FOR EFFICIENT PHOTOCATALYTIC H2O2 PRODUCTION

  • Du, Ruifeng
  • Xiao, Ke
  • Li, Baoying
  • Han, Xu
  • Zhang, Chaoqi
  • Wang, Xiang
  • Zuo, Yong
  • Guardia, Pablo
  • Li, Junshan
  • Chen, Jianbin
  • Arbiol, Jordi
  • Cabot, Andreu
16 pages. -- PDF file includes: 1.Characterization. -- 2. Electrocatalysis measurement. -- 3. Photocatalytic reduction of oxygen to hydrogen peroxide. -- 4. RRDE test. -- 5. Computational method. -- 6. Apparent quantum yield (AQY) calculations. -- 7. Structural characterization. -- 8. Elemental analysis. -- 9. Band structure. -- 10. Surface area and porosity. -- 11. Calibration for H2O2 quantification. -- 12. Photocatalytic activity. -- 13. Linear sweep voltammetry. -- 14. DFT calculation results. -- 15. Reaction mechanisms., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331792
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331792
HANDLE: http://hdl.handle.net/10261/331792
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331792
PMID: http://hdl.handle.net/10261/331792
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331792
Ver en: http://hdl.handle.net/10261/331792
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331792

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331796
Dataset. 2022

SUPPORTING INFORMATION FOR SMALL, DOI: 10.1002/SMLL.202103561 CRITICAL ROLE OF PHOSPHORUS IN HOLLOW STRUCTURES COBALTBASED PHOSPHIDES AS BIFUNCTIONAL CATALYSTS FOR WATER SPLITTING

  • Zhang, Wei
  • Han, Ning
  • Luo, Jiangshui
  • Han, Xu
  • Feng, Shihui
  • Guo, Wei
  • Xie, Sijie
  • Zhou, Zhenyu
  • Subramanian, Palaniappan
  • Wan, Kai
  • Arbiol, Jordi
  • Zhang, Chi
  • Liu, Shaomin
  • Xu, Maowen
  • Zhang, Xuan
  • Fransaer, Jan
62 pages. -- PDF file includes: 1. Experimental section. -- Figure S1. XRD patterns of pure ZIF-67 (a), Co(OH)2 (b) and Co3O4 (c). -- Figure S2. SEM images of Co3O4 single-shelled nanocages and EDS chemical mapping. -- Figure S3. SEM images of and EDS chemical mapping of CoP-HS (a); CoP2-HS (b); CoP3-HS (c). -- Figure S4. Nitrogen absorption–desorption isotherms and pore size distributions of three cobalt phosphides, CoP-HS (a); CoP2-HS (b); CoP3-HS (c). -- Figure S5. XPS spectra of the XPS full scan for CoP-HS, CoP2-HS and CoP3-HS. -- Figure S6. The CV curves of CoP-HS, CoP2-HS, and CoP3-HS obtained at the 1st (a), 3rd (b), 5th (c), and 10th (d) cycles at a scan rate of 10 mV/s in a 1.0 M KOH solution. -- Figure S7. The OER activities of CoP-HS, CoP2-HS and CoP3-HS were tested by both forward and reverse scan. -- Figure S8. (a) The CV of the CoPx. (b) The double layer capacitance (CDL) was determined as the half of the slope from the plot of the capacitive current vs. scan rate plot. -- Figure S9. Chronopotentiometry responses of activity stabilized CoPx in 1.0 M KOH in the catalytic turnover region. -- Figure S10. (a-c) OER LSV curves with (red) and without (blue) 100% iR drop correction. (d) Corresponding Tafel lines. -- Figure S11. SEM images of CoP-HS (a), CoP2-HS (b) and CoP3-HS (c) single-shelled nanocages after 100 h OER stability measurement. (d) The changed ratio of Co:P before and after stability test. -- Figure S12.SEM of post-OER CoP (a) before HCl wash, (b) after HCl washed. -- Figure S13. The LSV curves of CoP-HS, CoP2-HS, CoP3-HS, Co3O4-HS and Co(OH)2-HS measured in 1.0 M KOH solution toward OER at a scan rate 10 mV/s after activation by 50 CV cycles between 0.0 V and 0.85 V (vs. Hg/HgO) at a scan rate 50 mV/s. -- Figure S14. (a) The LSV curves of carbon paper measured in 1.0 M KOH toward HER at scan rate 10 mV/s. (b) The data of CoP-HS, CoP2-HS and CoP3-HS test in 1.0 M KOH. -- Figure S15. Chronopotentiometry responses of activity stabilized CoPx in 1.0 M KOH in the catalytic turnover region. -- Figure S16. (a-c) HER LSV curves with (red) and without (blue) 100% iR drop correction. (d) Corresponding Tafel lines. -- Figure S17. The CV curves of CoP-HS, CoP2-HS and CoP3-HS measured in 1.0 M KOH solution for 1st (a), 3rd (b), 5th (c), and 10th (d) cycles at a scan rate 10 mV/s. -- Figure S18. (a) The XPS spectra, and (b) the SEM image and EDS chemical mapping of CoP-HS after 100 h HER stability measurement in 1 M KOH. -- Figure S19. TEM images of CoP-HS after HER stability test (a). Elements mapping and SAED of CoP-HS after HER stability test (b-f). -- Figure S20. (a) The LSV curves of CoP-HS, CoP2-HS, CoP3-HS and Pt/C measured in 0.5 M H2SO4 toward HER at scan rate 10 mV/s. (b) The corresponding Tafel plots for the samples in 0.5 M H2SO4. (c) Nyquist plots of CoP-HS, CoP2-HS, CoP3-HS in 0.5 M H2SO4. (All the tests were taken on carbon paper). -- Figure S21. (a) The LSV curves of carbon paper measured in 0.5 M H2SO4 toward HER at scan rate 10 mV/s. (b) The data of CoP-HS, CoP2-HS and CoP3-HS test in 0.5 M H2SO4. -- Figure S22. The CV curves of CoP-HS, CoP2-HS and CoP3-HS measured in 0.5 M H2SO4 solution for 1st (a), 3rd (b), 5th (c), and 10th (d) cycles at a scan rate 10 mV/s. -- Figure S23. (a) The chronopotentiometry curve of CoP at the current density of -20 mA cm-2 for 100 h in 0.5 M H2SO4. (b) The SEM image and EDS chemical mapping (d) of CoP single-shelled nanocages after 100 h HER stability measurement. -- Figure S24. Overall water splitting activities of CoP||CoP and Pt/C||IrO2. -- Figure S25. (a, b, c, d, e, f) Corresponding levels of oxygen and hydrogen gas generated at 0 s, 200 s, 400 s, 600 s, 800 s, 1000 s. -- Figure S26. Optimized configuration of CoP-HS adsorbed with H. -- Figure S27. Optimized configuration of CoP2-HS adsorbed with H. -- Figure S28. Optimized configurations of CoP3-HS adsorbed with H. -- Figure S29. HER free energy changes of CoP-HS, CoP2-HS and CoP3-HS at P-sites and Co-site. in 0.5 M H2SO4. (c) P(2p) XPS spectra of CoP-HS after 100 h HER stability. -- Figure S30. The normalized LSV curves of CoP-HS, CoP2-HS, and CoP3-HS. -- Figure S31. The correlation between the HER free energy changes based on Co-sites of CoPx-HS and the normalized overpotential as well as Tafel slope measurement. -- Table S1. Elemental composition of Co and P in the different cobalt phosphides. -- Table S2. Comparison of the alkaline OER efficiency of those cobalt phosphides with other reported advanced cathodic materials. -- Table S3. Comparison of the alkaline HER efficiency of this CoP with other reported advanced cathodic materials. -- Table S4. Comparison of the acidic HER efficiency of this CoP with other reported advanced cathodic materials. -- Table S5. Comparison of the alkaline overall water-splitting efficiency of this CoP with other reported advanced bifunctional catalysts., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331796
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331796
HANDLE: http://hdl.handle.net/10261/331796
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331796
PMID: http://hdl.handle.net/10261/331796
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331796
Ver en: http://hdl.handle.net/10261/331796
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331796

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331806
Dataset. 2022

SUPPORTING INFORMATION ELECTROCHEMICAL REFORMING OF ETHANOL WITH ACETATE CO-PRODUCTION ON NICKEL COBALT SELENIDE NANOPARTICLES

  • Li, Junshan
  • Wang, Xiang
  • Xing, Congcong
  • Li, Luming
  • Mu, Shijia
  • Han, Xu
  • He, Ren
  • Liang, Zhifu
  • Martínez, Paulina
  • Yi, Yunan
  • Wu, Qianbao
  • Pan, Huiyan
  • Arbiol, Jordi
  • Cui, Chunhua
  • Zhang, Yu
  • Cabot, Andreu
15 pages. -- PDF file includes: 1. SEM-EDS characterization. -- 2. TEM characterization. -- 3. XPS characterization. -- 4. Electrochemical measurement. -- 5. IC measurement. -- 6. DFT calculations., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331806
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331806
HANDLE: http://hdl.handle.net/10261/331806
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331806
PMID: http://hdl.handle.net/10261/331806
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331806
Ver en: http://hdl.handle.net/10261/331806
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331806

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331810
Dataset. 2022

EXTENDED-SWIR PHOTODETECTION IN ALL-GROUP IV CORE/SHELL NANOWIRES [DATASET]

  • Luo, Lu
  • Assali, Simone
  • Atalla, Mahmoud R. M.
  • Koelling, Sebastian
  • Attiaoui, Anis
  • Daligou, Gérard
  • Martí-Sànchez, Sara
  • Arbiol, Jordi
  • Moutanabbir, Oussama
7 pages. -- PDF file includes: S1. AC HAADF STEM images of Ge/Ge0.92Sn0.08 core/shell NWs. -- S2. Estimate the gate capacitance of NW field-effect transistor. -- S3. Electrical characteristics of single Ge field-effect transistor. -- S4. Optical characteristics of single Ge/Ge0.92Sn0.08 core/shell NW detector. -- S5. FDTD simulation, Group IV Ge1–xSnx semiconductors hold the premise of enabling broadband silicon-integrated infrared optoelectronics due to their tunable band gap energy and directness. Herein, we exploit these attributes along with the enhanced lattice strain relaxation in Ge/Ge0.92Sn0.08 core/shell nanowire heterostructures to implement highly responsive room-temperature short-wave infrared nanoscale photodetectors. Atomic-level studies confirm the uniform shell composition and its higher crystallinity with respect to thin films counterparts. The demonstrated Ge/Ge0.92Sn0.08 p-type field-effect nanowire transistors exhibit superior optoelectronic properties achieving simultaneously relatively high mobility, high ON/OFF ratio, and high responsivity, in addition to a broadband absorption in the short-wave infrared range. Indeed, the reduced band gap of the Ge0.92Sn0.08 shell yields an extended cutoff wavelength of 2.1 μm, with a room-temperature responsivity reaching 2.7 A/W at 1550 nm. These results highlight the potential of Ge/Ge1–xSnx core/shell nanowires as silicon-compatible building blocks for nanoscale-integrated infrared photonics., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331810
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331810
HANDLE: http://hdl.handle.net/10261/331810
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331810
PMID: http://hdl.handle.net/10261/331810
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331810
Ver en: http://hdl.handle.net/10261/331810
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331810

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331815
Dataset. 2022

GLASS POLING AS A SUBSTRATE SURFACE PRE-TREATMENT FOR IN SITU METAL NANOPARTICLE FORMATION BY REDUCTION OF METAL SALT: SUPPLEMENT INFORMATION

  • Selvam, Tamil Selvi
  • Pervan, Petar
  • Sancho-Parramon, Jordi
  • Spadaro, Maria Chiara
  • Arbiol, Jordi
  • Janicki, Vesna
6 pages. -- Table 1. Composition of different glass types used as substrates. -- Fig. 1. Comparison of Ψ and Δ spectra for standard sample step and poled region, together with corresponding fits. -- Fig. 2. Au NPs: poled and step region ε2 (a) and corresponding SEM micrographs (b, c). -- Fig. 3. The effect of plasma cleaning: comparison of sample cleaned with plasma upon GP and prior to coating (left) and a standard sample (right). -- Fig. 4 Difference of ε2 for Ag NPs containing layers over poled and step region for Cr containing sample. -- Fig. 5. SEM micrographs: transition between step (upper part) and poled region (lower part) of the sample with higher Ag concentration in the coating (a), protrusion of crystallites from the coating (b), out diffused crystallites (c) and their clustering (d). EDS of step region: at the site of the crystallite (e) and a site next to it (f). -- Fig. 6. The sample coated immediately after poling in vacuum: comparison of Ψ and Δ spectra for step and poled region (a) and b), respectively). -- Fig. 7. Transition between step and poled region of the sample coated immediately after poling in vacuum: from step region with out-diffused Na crystallites to the poled, crystallites free region confirming absence of IE., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331815
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331815
HANDLE: http://hdl.handle.net/10261/331815
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331815
PMID: http://hdl.handle.net/10261/331815
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331815
Ver en: http://hdl.handle.net/10261/331815
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331815

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331919
Dataset. 2022

COBALT MOLYBDENUM NITRIDE-BASED NANOSHEETS FOR SEAWATER SPLITTING [DATASET]

  • Wang, Xiang
  • Han, Xu
  • Du, Ruifeng
  • Xing, Congcong
  • Qi, Xueqiang
  • Liang, Zhifu
  • Guardia, Pablo
  • Arbiol, Jordi
  • Cabot, Andreu
  • Li, Junshan
22 pages. -- PDF file includes: Structural characterization. -- Electrochemical Measurements. -- Faradaic efficiency (FE). -- Ionic strength compensation. -- Hypochlorite titration analysis. -- DFT Computational method. -- Figure S1 a-f) SEM images of the Mo-Co precursor. -- Figure S2 a-f) SEM images of MoN-Co2N. -- Figure S3. a-c) SEM images and d) EDS result of MoN-Co2N. -- Figure S4. a-f) TEM images of MoN-Co2N. -- Figure S5. a-c) TEM images and d-f) HAADF-STEM images of MoN-Co2N. -- Figure S6. TEM and HRTEM images of the MoN-Co2N. -- Figure S7. EELS chemical composition maps of MoN-Co2N obtained from the red squared area of the STEM micrograph. -- Figure S8. XRD patterns of MoN-Co2N, Mo-Co2N and CoxN compared with reference patterns of Co, Co4N, Co2N and MoN. -- Figure S9. a-c) SEM images and d) EDS result of Mo-Co2N. -- Figure S10. a-c) SEM images and d) EDS result of CoxN. -- Figure S11. Pore size distribution plot for MoN-Co2N and CoxN. -- Figure S12. Cyclic voltammograms for a) MoN-Co2N; b) Mo-Co2N; c) CoxN and d) Mo-Co precursors and e) IrO2 in the non-faradaic region of 1.12-1.22 V vs. RHE at various scan rates. -- Figure 13. a) N and b) Co partial and c) Total Density of states for Co2N and MoN-Co2N. -- Figure S14. The evolutions of local structural configurations for illustrating OER process of Co2N. (* represents the active site). -- Figure S15. Photograph of flasks containing seawater after adding KOH (left) and before adding KOH (right). -- Figure S16. Overall water/seawater splitting performance of MoN-Co2N ‖ MoN-Co2N and Pt/C ‖ IrO2 cells in 1 M KOH, 1 M KOH seawater, and untreated seawater. -- Figure S17. Overall water splitting performance of MoN-Co2N ‖ MoN-Co2N and Pt/C ‖ IrO2 cells in 1 M KOH seawater with and without ionic strength compensation. -- Figure S18. a) Digital photographs of the reaction and reference solutions for the iodometric titration, showing the absence of ClO− production in theº former case. b) Measured (dots) and theoretical (solid line) gaseous products by the two-electrode electrolyzer at a current of 50 mA cm-2 in 1 M KOH seawater. -- Figure S19. High-resolution XPS spectra of a) N 1s, b) Co 2p, c) Mo 3d for MoN-Co2N and MoN-Co2N after long-term reaction. -- Figure S20. a-b) TEM images, c-d) HAADF-STEM images, e-f) HRTEM of MoN-Co2N after long time reaction. -- Figure S21. EELS chemical composition maps of MoN-Co2N after long time reaction obtained from the red squared area of the STEM micrograph. Individual C K-edge at 284 eV (orange), N K-edge at 401 eV (blue), Co L2,3-edges at 779 eV (red) and Mo M4,5-edges at 227 eV (green) and composites of Co-N and Mo-N. -- Table S1. Comparison of OER activity of MoN-Co2N with recently reported nitride electrocatalysts in 1.0 M KOH electrolyte. -- Table S2. Cdl and ECSAs of various catalysts. -- Table S3. Comparison of HER performance of MoN-Co2N with recently reported nitride electrocatalysts in 1.0 M KOH electrolyte. -- Table S4 Comparison of the overall water splitting of MoN-Co2N with previously reported electrocatalysts., The development of cost-effective bifunctional catalysts for water electrolysis is both a crucial necessity and an exciting scientific challenge. Herein, a simple approach based on a metal–organic framework sacrificial template to preparing cobalt molybdenum nitride supported on nitrogen-doped carbon nanosheets is reported. The porous structure of produced composite enables fast reaction kinetics, enhanced stability, and high corrosion resistance in critical seawater conditions. The cobalt molybdenum nitride-based electrocatalyst is tested toward both oxygen evolution reaction and hydrogen evolution reaction half-reactions using the seawater electrolyte, providing excellent performances that are rationalized using density functional theory. Subsequently, the nitride composite is tested as a bifunctional catalyst for the overall splitting of KOH-treated seawater from the Mediterranean Sea. The assembled system requires overpotentials of just 1.70 V to achieve a current density of 100 mA cm–2 in 1 M KOH seawater and continuously works for over 62 h. This work demonstrates the potential of transition-metal nitrides for seawater splitting and represents a step forward toward the cost-effective implementation of this technology., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331919
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331919
HANDLE: http://hdl.handle.net/10261/331919
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331919
PMID: http://hdl.handle.net/10261/331919
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331919
Ver en: http://hdl.handle.net/10261/331919
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331919

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331920
Dataset. 2022

ELECTROCHEMICAL CONVERSION OF ALCOHOLS INTO ACIDIC COMMODITIES ON NICKEL SULFIDE NANOPARTICLES [DATASET]

  • Li, Junshan
  • Tian, Xi
  • Wang, Xiang
  • Zhang, Ting
  • Spadaro, Maria Chiara
  • Arbiol, Jordi
  • Li, Luming
  • Zuo, Yong
  • Cabot, Andreu
11 pages. -- Figure S1. SEM image and EDS spectrum of the as-synthesized NiS NPs. -- Figure S2. NiS NPs: (a) XPS survey spectrum. (b-c) Corresponding Ni 2p3/2, and S 2p high resolution XPS spectra. -- Figure S3. Ni NPs: (a) XRD pattern. (b) Representative TEM micrograph and the corresponding size distribution. -- Figure S4. CV curves for the monometallic Ni NPs based electrode in 1 M KOH with the presence of 1 M methanol or ethanol in alkaline media at a scan rate of 50 mV s 1. -- Table S1. Fitting parameters for the Nyquist curve at 1.5 V in 1.0 M KOH with and without 1.0 M m ethanol or ethanol. -- Figure S5. Electrochemical performance dependence on alcohol concentration for Ni-based electrode in 1 M KOH electrolyte. -- Figure S6. Electrochemical activity of Ni-based electrode in 1 M KOH. -- Figure S 7 . (a) CV curves in the potential range of 0.9 1. 6 V at different scan rates . (b) Linear fitting between the peak current and scan rates from 10 to 50 mV s 1 . (c) Linear fitting between the peak current and square root of scan rates from 60 to 100 mV s 1. -- Table S2. Comparison of the alcohols oxidation performance between this work and previously reported electrocatalysts with a similar system. -- Figure S8. (a) CA test towards MOR and EOR on NiS NPs electrode over 10,000 s testing period in 1 M KOH at 1.6 V. (b) IC curve of the solution at the end of CA testing. -- Figure S9. (a) Survey XPS spectrum of the NiS-based electrode after 10,000 s testing period in 1 M KOH and 1 M ethanol at 1.6 V. (b) High-resolution Ni 2p XPS spectrum. (c) High-resolution S 2pXPS spectrum. -- Figure S10. (a) Optimized structural model of NiOOH SO 4 (b) DOS of Ni OOH and Ni OOH SO 4 regarding the Ni 3d orbitals., The electrocatalytic oxidation of alcohols is a potentially cost-effective strategy for the synthesis of valuable chemicals at the anode while simultaneously generating hydrogen at the cathode. For this approach to become commercially viable, high-activity, low-cost, and stable catalysts need to be developed. Herein, we demonstrate an electrocatalyst based on earth-abundant nickel and sulfur elements. Experimental investigations reveal the produced NiS displays excellent electrocatalytic performance associated with a higher electrochemical surface area (ECSA) and the presence of sulfate ions on the formed NiOOH surface in basic media. The current densities reached for the oxidation of ethanol and methanol at 1.6 V vs reversible hydrogen electrode (RHE) are up to 175.5 and 145.1 mA cm–2, respectively. At these high current densities, the Faradaic efficiency of methanol to formate conversion is 98% and that of ethanol to acetate is 81%. Density functional theory calculations demonstrate the presence of the generated sulfate groups to modify the electronic properties of the NiOOH surface, improving electroconductivity and electron transfer. Besides, calculations are used to determine the reaction energy barriers, revealing the dehydrogenation of ethoxy groups to be more favorable than that of methoxy on the catalyst surface, which explains the highest current densities obtained for ethanol oxidation., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/331920
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331920
HANDLE: http://hdl.handle.net/10261/331920
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331920
PMID: http://hdl.handle.net/10261/331920
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331920
Ver en: http://hdl.handle.net/10261/331920
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/331920

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332071
Dataset. 2022

SUPPORTING INFORMATION PD2GA NANORODS AS HIGHLY ACTIVE BIFUNCTIONAL CATALYSTS FOR ELECTROSYNTHESIS OF ACETIC ACID COUPLED WITH HYDROGEN PRODUCTION

  • Wang, Qiuxia
  • Liu, Junfeng
  • Li, Tong
  • Zhang, Ting
  • Arbiol, Jordi
  • Yan, Suxia
  • Wang, Yong
  • Li, Huaming
  • Cabot, Andreu
11 pages. -- Fig. S1. Extra structure characterization of the Pd2Ga NRs. (a,b) HRTEMmicrographand the corresponding indexed power spectrum observed along the corresponding[001] (a) and [342] (b) zone axis of the orthorhombic Pnma Pd2Ga structure. (c) STEM-EELS elemental composition maps. -- Fig. S2. XRD pattern of as-synthesized Pd2Ga using 0.2 mmol of Pd(acac)2 and0.1mmol of Ga(acac)3 in the reaction. -- Fig. S3. SEM-EDS spectrum of Pd2Ga NRs. -- Fig. S4. (a-c) CV curves of Pd2Ga/C (a), Pd/C (b) and Pt/C (c) catalysts in 0.5MKOH with a scan rate of 20, 40, 60, 80 and 100 mV s-1. (d) Linear fit of the current density at 0.156 V as a function of scan rate from 20 to 100 mV s-1. -- Fig. S5. Nyquist plots of the catalysts at 0.8 V vs. RHE in 0.5 MKOHwith 0.5Methanol solution. -- Fig. S6. Comparison of the specific and mass activity of Pd2Ga/C, Pd/Cand Pt/Ccatalysts after 12 h CA measurements. -- Fig. S7. EOR CA curves of Pd2Ga catalyst reactivated by cycling every 1000 s inathree-electrode system with 0.5 M KOH and 0.5 M ethanol as electrolyte. -- Fig. S8. (a) 1H NMR analysis of the electrolyte before and after CA measurement. (b) 1H NMR analysis of acetic acid added in KOH and KOH + ethanol solution. -- Fig. S9. Potential-time curves of the Pd2Ga/C catalyst at current densities of 10mAcm-2 in 0.5 M KOH with ethanol solution. -- Fig. S10. Comparison of the current density of Pd2Ga/C, Pd/C and Pt/C catalysts after 15 h CA measurements in the two-electrode coupled system. -- Fig. S11. XRD Pattern (a) and TEM images of Pd2Ga/C in cathode (b) and anode (c) of the two-electrode electrolyzer after long-term stability measurement. -- Fig. S12. crystal structural models of Pd (111) and Pd2Ga (211). -- Fig. S13. DFT calculated models of Pd (a) and Pd2Ga (b) active sites with adsorbedreactive species from different EOR reaction states. -- Fig. S14. (a) CV curves of the catalysts in 0.5 M H2SO4 with 0.5 Methanol solution. (b) Polarization curves of catalysts in 0.5 M H2SO4 with 0.5 Methanol solution. (c) LSV curves of the assembled cells in 0.5 M H2SO4 with 0.5 Methanol solution. (d) CA measurements of the assembled cells at 1.0 V in 0.5 M H2SO4 with 0.5 Methanol solution. -- Fig. S15. DFT calculated models of OH- adsorbed on different sites of Pd2Ga (211) surface. -- Table S1. Comparison of specific activity, mass activity and stability of Pd- or Pt-based catalysts for EOR in alkaline media., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/332071
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332071
HANDLE: http://hdl.handle.net/10261/332071
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332071
PMID: http://hdl.handle.net/10261/332071
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332071
Ver en: http://hdl.handle.net/10261/332071
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/332071

Buscador avanzado