Resultados totales (Incluyendo duplicados): 5
Encontrada(s) 1 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/275469
Dataset. 2021

DATA ON SPONGE SILICON STOCK AND FLUXES IN THE BAY OF BREST (FRANCE)

  • López-Acosta, María
  • Maldonado, Manuel
  • Grall, Jacques
  • Ehrhold, Axel
  • Sitjà, Cèlia
  • Galobart, Cristina
  • Pérez, Fiz F.
  • Leynaert, Aude
This Excel file includes the data and tracked calculations of the manuscript entitled "Sponge contribution to the silicon cycle of a diatom-rich shallow bay". It includes 7 spreadsheets with the following contents: - READ ME - Standing STOCK living sponges - Sponge Si consumption FLUX - Si RESERVOIR in sediments - Sponge Si FLUXES in sediments - DIATOM Si fluxes&stocks (Fig.5) - Calculations for discussion, This research was supported by: - the Spanish Ministry grants CTM2015-67221-R and MICIU: #PID2019-108627RB-I00 to Manuel Maldonado - the grant 12735 – AO2020 of the French National research program EC2CO to Jacques Grall - the ISblue project, Interdisciplinary graduate school for the blue planet (ANR-17-EURE-0015), co-funded by a grant from the French government under the program "Investissements d'Avenir", and the “Xunta de Galicia” postdoctoral grant IN606B-2019/002 to María López-Acosta., Peer reviewed

DOI: http://hdl.handle.net/10261/275469, https://doi.org/10.20350/digitalCSIC/14699
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/275469
HANDLE: http://hdl.handle.net/10261/275469, https://doi.org/10.20350/digitalCSIC/14699
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/275469
PMID: http://hdl.handle.net/10261/275469, https://doi.org/10.20350/digitalCSIC/14699
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/275469
Ver en: http://hdl.handle.net/10261/275469, https://doi.org/10.20350/digitalCSIC/14699
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/275469

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/277857
Dataset. 2022

PREDATION DATA OF THE SPONGE-FEEDING NUDIBRANCH DORIS VERRUCOSA ON THE SPONGE HYMENIACIDON PERLEVIS

  • López-Acosta, María
  • Potel, Clèmence
  • Gallinari, Morgane
  • Pérez, Fiz F.
  • Leynaert, Aude
This Excel file includes the metadata of the survey of the predation activity of the nudibranch Doris verrucosa on the sponge Hymeniacidon perlevis, This research was supported by: - the grant 12735 – AO2020 of the French National research program EC2CO - the ISblue project, Interdisciplinary graduate school for the blue planet (ANR-17-EURE-0015), co-funded by a grant from the French government under the program "Investissements d'Avenir", and the “Xunta de Galicia” postdoctoral grant IN606B-2019/002, No

Proyecto: //
DOI: http://hdl.handle.net/10261/277857, https://doi.org/10.20350/digitalCSIC/14718
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/277857
HANDLE: http://hdl.handle.net/10261/277857, https://doi.org/10.20350/digitalCSIC/14718
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/277857
PMID: http://hdl.handle.net/10261/277857, https://doi.org/10.20350/digitalCSIC/14718
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/277857
Ver en: http://hdl.handle.net/10261/277857, https://doi.org/10.20350/digitalCSIC/14718
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/277857

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279863
Dataset. 2022

COASTAL PH VARIABILITY IN THE BALEARIC SEA

  • Hendriks, Iris E.
  • Flecha, Susana
  • Pérez, Fiz F.
  • Alou-Font, Eva
  • Tintoré, Joaquín
[Description of methods used for collection/generation of data] In both stations a SAMI-pH (Sunburst Sensors LCC) was attached, at 1 m in the Bay of Palma and at 4 m depth in Cabrera. The pH sensors were measuring pH, in the total scale (pH𝑇T), hourly since December 2018 in the Bay of Palma and since November 2019 in Cabrera. The sensor precision and accuracy are < 0.001 pH and ± 0.003 pH units, respectively. Monthly maintenance of the sensors was performed including data download and surface cleaning. Temperature and salinity for the Cabrera mooring line was obtained starting November 2019 with a CT SBE37 (Sea-Bird Scientific©). Accuracy of the CT is ± 0.002 ∘C for temperature and ± 0.003 mS cm−1−1 for conductivity. Additionally, oxygen data from a SBE 63 (Sea-Bird Scientific ©) sensor attached to the CT in Cabrera were used. Accuracy of oxygen sensors is ± 2% for the SBE 63., [Methods for processing the data] Periodically water samplings for dissolved oxygen (DO), pH in total scale at 25 ∘C (pH𝑇25) and total alkalinity (TA) were obtained during the sensor maintenance campaigns. DO and (pH𝑇25) samples were collected in order to validate the data obtained by the sensors. DO concentrations were evaluated with the Winkler method modified by Benson and Krause by potentiometric titration with a Metrohm 808 Titrando with a accuracy of the method of ± 2.9 μmol kg−1μmol kg−1 and with an obtained standard deviation from the sensors data and the water samples collected of ± 5.9 μmol kg−1μmol kg−1. pH𝑇25T25 data was obtained by the spectrophotometric method with a Shimadzu UV-2501 spectrophotometer containing a 25 ∘C-thermostated cells with unpurified m-cresol purple as indicator following the methodology established by Clayton and Byrne by using Certified Reference Material (CRM Batch #176 supplied by Prof. Andrew Dickson, Scripps Institution of Oceanography, La Jolla, CA, USA). The accuracy obtained from the CRM Batch was of ± 0.0051 pH units and the precision of the method of ± 0.0034 pH units. The mean difference between the SAMI-pH and discrete samples was of 0.0017 pH units., Funding for this work was provided by the projects RTI2018-095441-B-C21 (SuMaEco) and, the BBVA Foundation project Posi-COIN and the Balearic Islands Government projects AAEE111/2017 and SEPPO (2018). SF was supported by a “Margalida Comas” postdoctoral scholarship, also from the Balearic Islands Government. FFP was supported by the BOCATS2 (PID2019-104279GB-C21) project funded by MCIN/AEI/10.13039/501100011033.This work is a contribution to CSIC’s Thematic Interdisciplinary Platform PTI WATER:iOS., Peer reviewed

DOI: http://hdl.handle.net/10261/279863, https://doi.org/10.20350/digitalCSIC/14749
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279863
HANDLE: http://hdl.handle.net/10261/279863, https://doi.org/10.20350/digitalCSIC/14749
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279863
PMID: http://hdl.handle.net/10261/279863, https://doi.org/10.20350/digitalCSIC/14749
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279863
Ver en: http://hdl.handle.net/10261/279863, https://doi.org/10.20350/digitalCSIC/14749
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279863

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279877
Dataset. 2022

COASTAL PH VARIABILITY RECONSTRUCTED THROUGH MACHINE LEARNING IN THE BALEARIC SEA

  • Hendriks, Iris E.
  • Flecha, Susana
  • Giménez-Romero, Alex
  • Tintoré, Joaquín
  • Pérez, Fiz F.
  • Alou-Font, Eva
  • Matías, Manuel A.
[Description of methods used for collection/generation of data] Data was acquired in both stations using a SAMI-pH (Sunburst Sensors LCC) was attached, at 1 m in the Bay of Palma and at 4 m depth in Cabrera. The pH sensors were measuring pH, in the total scale (pH𝑇), hourly since December 2018 in the Bay of Palma and since November 2019 in Cabrera. The sensor precision and accuracy are < 0.001 pH and ± 0.003 pH units, respectively. Monthly maintenance of the sensors was performed including data download and surface cleaning. Temperature and salinity for the Cabrera mooring line was obtained starting November 2019 with a CT SBE37 (Sea-Bird Scientific©). Accuracy of the CT is ± 0.002 ∘C for temperature and ± 0.003 mS cm−1−1 for conductivity. Additionally, oxygen data from a SBE 63 (Sea-Bird Scientific ©) sensor attached to the CT in Cabrera were used. Accuracy of oxygen sensors is ± 2% for the SBE 63., [Methods for processing the data] Once data (available at https://doi.org/XXX/DigitalCSIC/XXX) was validated, several processing steps were performed to ensure an optimal training process for the neural network models. First, all the data of the time series were re-sampled by averaging the data points obtaining a daily frequency. Afterwards, a standard feature-scaling procedure (min-max normalization) was applied to every feature (temperature, salinity and oxygen) and to pHT. Finally, we built our training and validations sets as tensors with dimensions (batchsize, windowsize, 𝑁features), where batchsize is the number of examples to train per iteration, windowsize is the number of past and future points considered and 𝑁features is the number of features used to predict the target series. Temperature values below 𝑇=12.5T=12.5 °C were discarded as they are considered outliers in sensor data outside the normal range in the study area. A BiDireccional Long Short-Term Memory (BD-LSTM) neural network was selected as the best architecture to reconstruct the pHT time series, with no signs of overfitting and achieving less than 1% error in both training and validation sets. Data corresponding to the Bay of Palma were used in the selection of the best neural network architecture. The code and data used to determine the best neural network architecture can be found in a GitHub repository mentioned in the context information., Funding for this work was provided by the projects RTI2018-095441-B-C21, RTI2018-095441-B-C22 (SuMaEco) and Grant MDM-2017-0711 (María de Maeztu Excellence Unit) funded by MCIN/AEI/10.13039/501100011033 and by the “ERDF A way of making Europe", the BBVA Foundation project Posi-COIN and the Balearic Islands Government projects AAEE111/2017 and SEPPO (2018). SF was supported by a “Margalida Comas” postdoctoral scholarship, also from the Balearic Islands Government. FFP was supported by the BOCATS2 (PID2019-104279GB-C21) project funded by MCIN/AEI/10.13039/501100011033.This work is a contribution to CSIC’s Thematic Interdisciplinary Platform PTI WATER:iOS (https://pti-waterios.csic.es/)., Peer reviewed

DOI: http://hdl.handle.net/10261/279877, https://doi.org/10.20350/digitalCSIC/14750
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279877
HANDLE: http://hdl.handle.net/10261/279877, https://doi.org/10.20350/digitalCSIC/14750
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279877
PMID: http://hdl.handle.net/10261/279877, https://doi.org/10.20350/digitalCSIC/14750
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279877
Ver en: http://hdl.handle.net/10261/279877, https://doi.org/10.20350/digitalCSIC/14750
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/279877

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/263685
Dataset. 2022

CARBON SYSTEM PARAMETERS IN THE WATER COLUMN OF THE STRAIT OF GIBRALTAR OVER 2005-2021: DATABASE GENERATED AT THE GIFT (GIBRALTAR FIXED TIME SERIES)

  • Huertas, I. Emma
  • Amaya-Vías, Silvia
  • Flecha, Susana
  • Makaoui, Ahmed
  • Pérez, Fiz F.
The database provides discrete measurements of carbon system parameters in water samples collected at 3 stations that form the marine time series GIFT during 33 oceanographic campaigns conducted over 2005–2021. Geographic coordinates of sampling stations are provided. Some physical data (i.e. pressure, temperature and salinity) are also included. Moreover, pH data obtained with a SAMI-pH sensor (Sunburst Sensors, LLC)) attached to a mooring line deployed in the Strait of Gibraltar for the years 2016 and 2017 are provided. During the cruises, a temperature and salinity profile was obtained with a Seabird 911Plus CTD probe. Seawater was subsequently collected for biogeochemical analysis using Niskin bottles immersed in an oceanographic rosette platform at variable depths (from 5 to 8 levels) depending on the instant position of the interface between the Atlantic and Mediterranean flows that was identified by CTD profiles. The biogeochemical variables shown in the database are pH in total scale at 25 °C (pHT25), total alkalinity (AT), and inorganic nutrients (phosphate, PO43and Silicate, SiO44−). pHT25 data were obtained by the spectrophotometric method with m-cresol purple as the indicator (Clayton & Byrne 1993). Samples were taken directly from the oceanographic bottles in 10 cm path-length optical glass cells and measurements were carried out with a Shimadzu UV-2401PC spectrophotometer containing a 25 °C-thermostated cells holder. Samples for AT analysis were collected in 500-ml borosilicate bottles, and poisoned with 100 μl of HgCl2-saturated aqueous solution and stored until measurement in the laboratory. AT was measured by potential titration according to Mintrop et al. (2000) with a Titroprocessor (model Metrohm 794 from 2005-2020 and model Metrothm 888 for 2021). Water samples (5 mL, two replicates) for inorganic nutrients determination were taken, filtered immediately (Whatman GF/F, 0.7 μm) and stored frozen for later analyses in the shore-based laboratory. Nutrients concentrations were measured with a continuous flow auto-analyzer using standard colorimetric techniques (Hansen & Koroleff 1999). 2. Methods for processing the data: 3. Instrument- or software-specific information needed to interpret/reproduce the data, please indicate their location: 4. Standards and calibration information, if appropriate: 5. Environmental/experimental conditions: 6. Describe any quality-assurance procedures performed on the data: 7. People involved with sample collection, processing, analysis and/or submission, please specify using CREDIT roles https://casrai.org/credit/: Chief Scientists -I.Emma Huertas/Susana Flecha; Hydro: Who -Susana Flecha/David Roque/Silvia Amaya-Vías/Angélica Enrique; Nuts: Who -Manuel Arjonilla/ Status - final; Silicate and Phosphate Autoanalizer Hansen and Koroleff (1999), This research was supported by the COMFORT project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 820989 (project COMFORT, "Our common future ocean in the Earth system – quantifying coupled cycles of carbon, oxygen, and nutrients for determining and achieving safe operating spaces with respect to tipping points).” Funding was also provided by the European projects CARBOOCEAN (FP6-511176), CARBOCHANGE (FP7-264879), PERSEUS (FP7-287600) and the Junta de Andalucía TECADE project (PY20_00293). The dataset is subject to a Creative Commons License Attribution-ShareAlike 4.0 International. F.F.P. was supported by the BOCATS2 (PID2019-104279GB-C21) project funded by MCIN/AEI/10.13039/501100011033. SAV was supported by a pre-doctoral grant FPU19/04338 from the Spanish Ministry of Science, Innovation and Universities., Peer reviewed

DOI: http://hdl.handle.net/10261/263685
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/263685
HANDLE: http://hdl.handle.net/10261/263685
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/263685
PMID: http://hdl.handle.net/10261/263685
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/263685
Ver en: http://hdl.handle.net/10261/263685
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/263685

Buscador avanzado