Resultados totales (Incluyendo duplicados): 7719
Encontrada(s) 772 página(s)
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359226
Dataset. 2023

SUPPLEMENTARY MATERIAL ANTI‐TRYPANOSOMATIDAE ACTIVITY OF ESSENTIAL OILS AND THEIR MAIN COMPONENTS FROM SELECTED MEDICINAL PLANT

  • Bailén, María
  • Illescas, Cristina
  • Quijada, Mónica
  • Martínez-Díaz, Rafael A.
  • Ochoa, Eneko
  • Gómez-Muñoz, María Teresa
  • Navarro-Rocha, Juliana
  • González-Coloma, Azucena
Table S1. Plant species selected, localization, coordinates, and voucher numbers. Table S2. Chemical composition of the EOs from the most active species: L. luisieri (1 and 2) (Ll1 and Ll2), M. suaveolens (Ms); S. hybrid (Sh), S. montana (Sm), T. vulgaris (Tv), and T. zygis (Tz). RI, Retention index; RT, Retention time; HD, EOs obtained by hydrodistillation; SD, EOs obtained by steam distillation. Figure S1. Percentage of antiprotozoal activity of EOs obtained by hydrodistillation (HD) and steam distillation (SD) from L. x intermedia “Abrial” (Lab), L. x intermedia “Grosso” (Lg), L. x intermedia “Super” (Lsu), L. lanata (Ll), L. angustifolia (La), L. mallete (Lm), T. mastichina (Tm), O. virens (Ov), S. blancoana (Sb), S. officinalis (So), S. sclarea (Ss), R. officinalis (Ro), S. chamaecyparissus (Sc), T. vulgare (Tav), D. graveolens (Dg). A. Anti-Leishmania activity. B. Anti-Phytomonas activity of EOs. Figure S2. Chromatograms of the most active species EOs: L. luisieri (1 and 2) (Ll1 and Ll2), M. suaveolens (Ms); S. hybrid (Sh), S. montana (Sm), T. vulgaris (Tv), and T. zygis (Tz); HD, EOs obtained by hydrodistillation; SD, EOs obtained by steam distillation., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359226
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359226
HANDLE: http://hdl.handle.net/10261/359226
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359226
PMID: http://hdl.handle.net/10261/359226
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359226
Ver en: http://hdl.handle.net/10261/359226
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359226

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359229
Dataset. 2023

ADDITIONAL FILE 1 BIOCHAR FROM GRAPE POMACE, A WASTE OF VITIVINICULTURAL ORIGIN, IS EFFECTIVE FOR ROOT-KNOT NEMATODE CONTROL

  • Martínez-Gómez, Ángela
  • Andrés, María Fé
  • Barón-Sola, Ángel
  • Díaz-Manzano, Fernando E.
  • Yousef, Ibraheem
  • Mena, Ismael F.
  • Díaz, Elena
  • Gómez-Torres, Óscar
  • González-Coloma, Azucena
  • Hernández, Luis E.
  • Escobar, Carolina
pH values of different dilutions of the aqueous extracts (BC350AE and BC700AE) obtained from washing BC350 and BC700 (3% (w/v) with distilled water), respectively, for 24 h. Figure S1. SR-FTIR spectroscopy of grape pomace (GP) and biochars prepared at 350 °C and 700 °C (BC350, BC700, respectively). Full 2nd derivative spectra (wavenumber range between 3100 and 900 cm−1) along with the first two main principal components (PC-1 and PC-2) for different wavenumber ranges, which explain the largest contributions of signal shifts between samples. Numbers in red indicate the wavenumber values of the most representative peaks. Figure S2. SR-FTIR spectroscopy of grape pomace (GP), washed (BC350W) and unwashed (BC350) biochar prepared at 350 °C, and BC350 aqueous extract (BC350AE). Full 2nd derivative spectra (wavenumber range between 3100 and 900 cm−1) along with the first two main principal components (PC-1 and PC-2) for different wavenumber ranges, which explain the largest contributions of signal shifts between samples. Numbers in red indicate the wavenumber values of the most representative peaks. Figure S3. SR-FTIR spectroscopy of grape pomace (GP), washed (BC700W) and unwashed (BC700) biochar prepared at 700 °C, and BC700 aqueous extract (BC700AE). Full 2nd derivative spectra (wavenumber range between 3100 and 900 cm−1) and along with the first two main principal components (PC-1 and PC-2) for different wavenumber ranges, which explain the largest contributions of signal shifts between samples. Numbers in red indicate the wavenumber values of the most representative peaks. Figure S4. Effect of different concentrations (3%, 1.5% and 0.75%) of the unwashed biochar obtained at 700 °C (BC700) on 3-week old tomato plants 24 h and 6 days after its transplantation into biochar-amended sandy soils. Figure S5. Effect of different concentrations (3%, 1.5% and 0.75%) of the unwashed biochar obtained at 350 °C (BC350) on roots and shoots of tomato plants 3 weeks after its transplantation into biochar-amended sandy soils. Figure S6. Effect of different concentrations of BC350W on the percentage of seed germination (a), number of leaves (b), shoot length (c), relative water content (RCW) (d) and total fresh biomass (f) of 6-week-old tomato plants. Means ± standard errors (n ≥ 8). Significant differences with respect to the control according to Mann–Whitney U test. ***p < 0.001; **p < 0.01., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359229
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359229
HANDLE: http://hdl.handle.net/10261/359229
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359229
PMID: http://hdl.handle.net/10261/359229
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359229
Ver en: http://hdl.handle.net/10261/359229
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359229

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359238
Dataset. 2023

INSECT ANTIFEEDANT BENZOFURANS FROM PERICALLIS SPECIE [DATASET]

  • Díaz, Carmen E.
  • Fraga, Braulio M.
  • Portero, Adriana G.
  • Brito, Iván
  • López-Balboa, Carmen
  • Ruiz-Vásquez, Liliana
  • González-Coloma, Azucena
Figures S1–S2: 1H-NMR and 13C-NMR of compound 1a; Figure S3: 13C-NMR of compound 2; Figures S4–S5: 13C-NMR of compounds 4–5; Figures S6–S7: 1H-NMR an 13C-NMR of compound 7a; Figures S8–S10: 13C-NMR of compounds 8–10; Figures S11–S20: 1H-NMR and 13C-NMR of compounds 11–14 and 15–16; Figure S21: 1H-NMR of compound 17; Figures S22–S27: 1H-NMR and 13C-NMR of compounds 18,18a and 19., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359238
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359238
HANDLE: http://hdl.handle.net/10261/359238
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359238
PMID: http://hdl.handle.net/10261/359238
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359238
Ver en: http://hdl.handle.net/10261/359238
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359238

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359246
Dataset. 2023

INTERSTAGE SIMILARITIES IN HOST-PLANT PREFERENCE IN THE DIAMONDBACK MOTH (LEPIDOPTERA: PLUTELLIDAE) [DATASET]

  • Badenes-Pérez, Francisco Rubén
  • Heckel, David G.
Table S1: Test statistic and p-values of Kruskall–Wallis tests comparing differences in oviposition on four different oviposition substrates (cabbage, rape, pea, and aluminium foil) for the strains DBM-W, DBM-NOQA, DBM-C, and DBM-P of P. xylostella. The significance values have been adjusted by the Bonferroni correction for multiple tests. Significant p-values (p ≤ 0.05) are shown in bold type; Table S2: Comparison of the preference between abaxial and adaxial leaf surfaces among the three P. xylostella strains reared on cabbage (DBM-C), artificial diet (DBM-G88), and pea (DBM-P). Oviposition preference data were analyzed using a one-tailed, two-sample test of proportions (p ≤ 0.05) comparing the percentages of the total number of eggs laid on the abaxial side of leaves (n = 3–96, except in the case of C. papaya for DBM-C, where n = 2).; and Table S3: Total glucosinolate content (TOT) and content of aliphatic glucosinolates with sulfur-containing side chains (AS), other aliphatic glucosinolates (AO), benzenic glucosinolates (BEN), and indolic glucosinolates (IN) for each of the plant types tested (A). Glucosinolate richness (S), Shannon’s diversity index for the four glucosinolate classes (HA), Shannon’s diversity index for the relative concentrations of all individual glucosinolates (HB), and chemical complexity index for glucosinolates (CCI) for each of the plant types tested (B). Values based on means across replicates taken from Badenes-Pérez et al. 2020 [10]., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359246
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359246
HANDLE: http://hdl.handle.net/10261/359246
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359246
PMID: http://hdl.handle.net/10261/359246
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359246
Ver en: http://hdl.handle.net/10261/359246
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359246

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359249
Dataset. 2023

PLANT GLUCOSINOLATE CONTENT AND HOST-PLANT PREFERENCE AND SUITABILITY IN THE SMALL WHITE BUTTERFLY (LEPIDOPTERA: PIERIDAE) AND COMPARISON WITH ANOTHER SPECIALIST LEPIDOPTERAN [DATASET]

  • Badenes-Pérez, Francisco Rubén
Table S1: Pairwise comparisons in OPI between plant species after conducting Kruskal–Wallis tests; Table S2: Comparison between P. rapae and P. xylostella for the percentage of eggs laid on plant species tested compared to A. thaliana (n = 3). Significant differences are shown in bold type; Table S3: Significance of correlations between oviposition preference index in two-choice tests (OPI), total oviposition in no-choice tests (TO), and larval survival (LS) for P. rapae and P. xylostella in the plants tested; Table S4: Mean ± SE glucosinolate content (µmol g-1 plant dry weight) in the plants tested [37]; Table S5: Total glucosinolate content (TOT) and content of aliphatic glucosinolates with sulfur-containing side chains (AS), other aliphatic glucosinolates (AO), benzenic glucosinolates (BEN), and indolic glucosinolates (IN) for each of the plant types tested (A). Glucosinolate richness (S), Shannon’s diversity index for the four glucosinolate classes (HA), Shannon’s diversity index for the relative concentrations of all individual glucosinolates (HB), and chemical complexity index for glucosinolates (CCI) for each of the plant types tested (B) [37]; Table S6: Correlations between oviposition preference index (OPI), total oviposition (TO), and larval survival (LS) and glucosinolate richness (S), Shannon’s diversity index for the four glucosinolate classes (HA), Shannon’s diversity index for the relative concentrations of all individual glucosinolates (HB), glucosinolate complexity index (GCI), total glucosinolate content (TOT), aliphatic glucosinolates with sulfur-containing side chains (AS), other aliphatic glucosinolates (AO), benzenic (BEN), and indolic glucosinolates (IN) as shown by CATPCA analysis; Table S7: Pairwise comparisons in total oviposition in no-choice tests (TO) between plant species after conducting Kruskal–Wallis tests; Table S8: Comparison between P. rapae and P. xylostella for the percentage of eggs laid on the abaxial side of the leaves in the plant species tested (n = 3–96, except in the case of A. argenteum, C. bursa-pastoris, and T. majus for P. rapae and in the case of C. papaya and M. oleifera for P. xylostella, in which n = 2); Table S9: Pairwise comparisons in total oviposition in no-choice tests (TO) between plant species after conducting Kruskal–Wallis tests; Table S8: Pairwise comparisons in larval survival (LS) between plant species after conducting Kruskal–Wallis tests; Table S10: Origin of the seeds of the plant species tested; Figure S1: CATPCA plots showing the relationship between oviposition preference index (OPI) (A), total oviposition (TO) (B), and larval survival (LS) (C) and total glucosinolate content (TOT) and content of aliphatic glucosinolates with sulfur-containing side chains (AS), other aliphatic glucosinolates (AO), benzenic glucosinolates (BEN), and indolic glucosinolates (IN) in the plant species tested. Reference [37] is cited in the Supplementary Materials., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359249
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359249
HANDLE: http://hdl.handle.net/10261/359249
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359249
PMID: http://hdl.handle.net/10261/359249
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359249
Ver en: http://hdl.handle.net/10261/359249
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359249

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359262
Dataset. 2023

PLANT COMMUNITY TRAITS AND PHYLOGENY PREDICT SOIL CARBON AND NUTRIENT CYCLING IN MEDITERRANEAN MIXED FORESTS [DATASET]

  • Prieto Rubio, Jorge
  • Perea, A.
  • Garrido Sánchez, José Luis
  • Alcántara, Julio M.
  • Azcón González de Aguilar, Concepción
  • López-García, A.
  • Rincón, Ana
Table S1. Soil samples collected per plant species, forest (Jaén JA; Segura SE), dominant mycorrhizal type (Myc) of plants (arbuscular mycorrhizal AM; ectomycorrhizal ECM) and season (Autumn; Spring). Enzymatic activities (pmol mg-1 h-1 SOM-1) related to carbon (C), nitrogen (N) and phosphorous (P) cycles in the soils collected under the different plant species are shown. The enzymes corresponding to each cycle are: Labile C = β-glucosidase + cellobiohydrolase; Non-labile C = β-xylosidase + β-glucuronidase + laccase; N = chitinase + leucine-aminopeptidase; P = acid + alkaline phosphatases. Table S2. Linear Mixed-Effect Models testing the effect of season, forest and plant species on soil properties and C and nutrient cycling. Season and forest were fixed factors, while the site nested in forest and the plant species nested in site and forest were random factors. Significant interactions among factors were not detected. Labile C = β-glucosidase + cellobiohydrolase; Non-labile C = β-glucuronidase + β-xylosidase + laccase; N cycling = chitinase + leucine-aminopeptidase; P cycling = acid + alkaline phosphatase. Soil properties: pH, SOM = soil organic matter, soil moisture. χ12 values for fixed and random factors and Bonferroni corrected p-values ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘.’ p < 0.10, are given; significant effects are noted in bold. The coefficient of determination (pseudo-R2, i.e., variance explained) is shown for both pools of fixed and random factors. Table S3. Plant phylogenetic composition and morpho-functional traits predictors of carbon and nutrient cycling in soils, analysed by Redundancy Analysis. A Redundancy Analysis was carried out per forest, a) Jaén and b) Segura, to determine the non-redundant phylogenetic PCoA axes and morpho-functional traits that explained responses of carbon and nutrient cycling. ANOVA results (F statistic and p-value) were extracted from each Redundancy Analysis and those significant (p < 0.05) compiled in this table (see also Figure 4). Fig. S1. Relationship between N cycling-related enzymatic activities with C cycling-related ones. Pearson correlations were carried out to relate N-related enzymes (chitinase + leucine amino-peptidase) with hydrolytic (β-glucosidase + cellobiohydrolase + β-glucuronidase + β-xylosidase) and oxidative (laccase) C-related enzymes. Each plot shows the correlation coefficient (r) with its p-value. Fig. S2. Local Moran’s Index (LMI) calculated for carbon and nutrient cycling and cycling ratios and mapped onto the plant phylogeny per forest, a) Jaén and b) Segura. Positive/negative LMI values indicate that closely relatives tend to show similar/dissimilar values for a given variable. Values marked in red indicate significant and marginal autocorrelations, i.e., p < 0.05 and 0.05 > p < 0.10, respectively. Hotspots of positive (i.e., phylogenetic conservatism) and negative (i.e., phylogenetic divergence) autocorrelation are differentiated with triangles and all are represented by LMI with p < 0.05. See correspondence between acronyms and plant names in Table S1. Labile C = β-glucosidase and cellobiohydrolase; Non-labile C = β-xylosidase, β-glucuronidase and laccase; N = chitinase and leucine-aminopeptidase; P = acid and alkaline phosphatases. Figure S3. Phylogenetic composition of plant communities. Principal Coordinates Analysis (PCoA) was run over the phylogenetic distance matrix of plant species studied per forest, Jaén and Segura. Eigenvector values (PCoA-n) that significantly explained responses of carbon and nutrient cycling were used in RDA analyses. Scores of PCoA axis were plotted by plant species at each forest, a) Jaén and b) Segura, and may locate taxa across the phylogeny on the PCoA axes. The total percentage of variance explained by significant PCoA axes was 3.4 % for Jaén and 0.2 % for Segura., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359262
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359262
HANDLE: http://hdl.handle.net/10261/359262
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359262
PMID: http://hdl.handle.net/10261/359262
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359262
Ver en: http://hdl.handle.net/10261/359262
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359262

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359272
Dataset. 2023

SUPPORTING INFORMATION STRUCTURE AND ECOLOGICAL FUNCTION OF THE INTERACTIONS BETWEEN PLANTS AND ARBUSCULAR MYCORRHIZAL FUNGI THROUGH MULTILAYER NETWORKS

  • Garrido Sánchez, José Luis
  • Alcántara, Julio M.
  • López-García, A.
  • Ozuna, Carmen
  • Perea, Antonio J.
  • Prieto Rubio, Jorge
  • Rincón, Ana
  • Azcón González de Aguilar, Concepción
Table S1. Location, altitude and dominant vegetation at each study site. Table S2. Samples distribution by species, season, region and site. Figure S3. Sequencing rarefaction curves and sampling completeness. Methods S4. Root processing, DNA extraction, sequencing and bioinformatic analyses. Table S5. A recruitment network represented by its recruitment matrix. Table S6. Description of main network metrics and indices used throughout the work. Methods S7. General metrics describing the plant-AMF networks studied. Methods S8. Null models for modularity. Table S9. Maximum likelihood tree of the sequences defining the AMF virtual taxa sampled in this study. Table S10. PERMANOVA exploring the effect of region, season, site and plant species on AMF community composition. Table S11. Bayesian glmm testing the influence of the degree of canopy plant species on the dissimilarity in AMF communities between canopy and recruit species., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359272
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359272
HANDLE: http://hdl.handle.net/10261/359272
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359272
PMID: http://hdl.handle.net/10261/359272
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359272
Ver en: http://hdl.handle.net/10261/359272
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359272

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359613
Dataset. 2023

TABLE1_STRUCTURAL AND EVOLUTIONARY INSIGHTS INTO ASTACIN METALLOPEPTIDASES.XLSX [DATASET]

  • Gomis-Rüth, F. Xavier
  • Stöcker, Walter
The astacins are a family of metallopeptidases (MPs) that has been extensively described from animals. They are multidomain extracellular proteins, which have a conserved core architecture encompassing a signal peptide for secretion, a prodomain or prosegment and a zinc-dependent catalytic domain (CD). This constellation is found in the archetypal name-giving digestive enzyme astacin from the European crayfish Astacus astacus. Astacin catalytic domains span ∼200 residues and consist of two subdomains that flank an extended active-site cleft. They share several structural elements including a long zinc-binding consensus sequence (HEXXHXXGXXH) immediately followed by an EXXRXDRD motif, which features a family-specific glutamate. In addition, a downstream SIMHY-motif encompasses a “Met-turn” methionine and a zinc-binding tyrosine. The overall architecture and some structural features of astacin catalytic domains match those of other more distantly related MPs, which together constitute the metzincin clan of metallopeptidases. We further analysed the structures of PRO-, MAM, TRAF, CUB and EGF-like domains, and described their essential molecular determinants. In addition, we investigated the distribution of astacins across kingdoms and their phylogenetic origin. Through extensive sequence searches we found astacin CDs in > 25,000 sequences down the tree of life from humans beyond Metazoa, including Choanoflagellata, Filasterea and Ichtyosporea. We also found < 400 sequences scattered across non-holozoan eukaryotes including some fungi and one virus, as well as in selected taxa of archaea and bacteria that are pathogens or colonizers of animal hosts, but not in plants. Overall, we propose that astacins originate in the root of Holozoa consistent with Darwinian descent and that the latter genes might be the result of horizontal gene transfer from holozoan donors., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359613
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359613
HANDLE: http://hdl.handle.net/10261/359613
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359613
PMID: http://hdl.handle.net/10261/359613
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359613
Ver en: http://hdl.handle.net/10261/359613
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359613

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359624
Dataset. 2023

DATASHEET1_STRUCTURAL AND EVOLUTIONARY INSIGHTS INTO ASTACIN METALLOPEPTIDASES.DOCX [DATASET]

  • Gomis-Rüth, F. Xavier
  • Stöcker, Walter
The astacins are a family of metallopeptidases (MPs) that has been extensively described from animals. They are multidomain extracellular proteins, which have a conserved core architecture encompassing a signal peptide for secretion, a prodomain or prosegment and a zinc-dependent catalytic domain (CD). This constellation is found in the archetypal name-giving digestive enzyme astacin from the European crayfish Astacus astacus. Astacin catalytic domains span ∼200 residues and consist of two subdomains that flank an extended active-site cleft. They share several structural elements including a long zinc-binding consensus sequence (HEXXHXXGXXH) immediately followed by an EXXRXDRD motif, which features a family-specific glutamate. In addition, a downstream SIMHY-motif encompasses a “Met-turn” methionine and a zinc-binding tyrosine. The overall architecture and some structural features of astacin catalytic domains match those of other more distantly related MPs, which together constitute the metzincin clan of metallopeptidases. We further analysed the structures of PRO-, MAM, TRAF, CUB and EGF-like domains, and described their essential molecular determinants. In addition, we investigated the distribution of astacins across kingdoms and their phylogenetic origin. Through extensive sequence searches we found astacin CDs in > 25,000 sequences down the tree of life from humans beyond Metazoa, including Choanoflagellata, Filasterea and Ichtyosporea. We also found < 400 sequences scattered across non-holozoan eukaryotes including some fungi and one virus, as well as in selected taxa of archaea and bacteria that are pathogens or colonizers of animal hosts, but not in plants. Overall, we propose that astacins originate in the root of Holozoa consistent with Darwinian descent and that the latter genes might be the result of horizontal gene transfer from holozoan donors., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359624
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359624
HANDLE: http://hdl.handle.net/10261/359624
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359624
PMID: http://hdl.handle.net/10261/359624
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359624
Ver en: http://hdl.handle.net/10261/359624
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359624

Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359641
Dataset. 2023

SUPPLEMENTARY DATA FROM TARGETING AGGRESSIVE B-CELL LYMPHOMAS THROUGH PHARMACOLOGICAL ACTIVATION OF THE MITOCHONDRIAL PROTEASE OMA1 [DATASET]

  • Schwarzer, Adrián
  • Oliveira, Matheus
  • Kleppa, Marc-Jens
  • Slattery, Scott D.
  • Anantha, Andy
  • Cooper, Alan
  • Hannink, Mark
  • Schambach, Axel
  • Dörrie, Anneke
  • Kotlyarov, Alexey
  • Gaestel, Matthias
  • Hembrough, Todd
  • Levine, Jedd
  • Luther, Michael
  • Stocum, Michael
  • Stiles, Linsey
  • Weinstock, David M.
  • Liesa, Marc
  • Kostura, Matthew J.
Compiled RNAseq data from HCT-116 cells treated with BTM-3528., DLBCL are aggressive, rapidly proliferating tumors that critically depend on the ATF4-mediated integrated stress response (ISR) to adapt to stress caused by uncontrolled growth, such as hypoxia, amino acid deprivation, and accumulation of misfolded proteins. Here, we show that ISR hyperactivation is a targetable liability in DLBCL. We describe a novel class of compounds represented by BTM-3528 and BTM-3566, which activate the ISR through the mitochondrial protease OMA1. Treatment of tumor cells with compound leads to OMA1-dependent cleavage of DELE1 and OPA1, mitochondrial fragmentation, activation of the eIF2α-kinase HRI, cell growth arrest, and apoptosis. Activation of OMA1 by BTM-3528 and BTM-3566 is mechanistically distinct from inhibitors of mitochondrial electron transport, as the compounds induce OMA1 activity in the absence of acute changes in respiration. We further identify the mitochondrial protein FAM210B as a negative regulator of BTM-3528 and BTM-3566 activity. Overexpression of FAM210B prevents both OMA1 activation and apoptosis. Notably, FAM210B expression is nearly absent in healthy germinal center B-lymphocytes and in derived B-cell malignancies, revealing a fundamental molecular vulnerability which is targeted by BTM compounds. Both compounds induce rapid apoptosis across diverse DLBCL lines derived from activated B-cell, germinal center B-cell, and MYC-rearranged lymphomas. Once-daily oral dosing of BTM-3566 resulted in complete regression of xenografted human DLBCL SU-DHL-10 cells and complete regression in 6 of 9 DLBCL patient-derived xenografts. BTM-3566 represents a first-of-its kind approach of selectively hyperactivating the mitochondrial ISR for treating DLBCL., Peer reviewed

Proyecto: //
DOI: http://hdl.handle.net/10261/359641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359641
HANDLE: http://hdl.handle.net/10261/359641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359641
PMID: http://hdl.handle.net/10261/359641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359641
Ver en: http://hdl.handle.net/10261/359641
Digital.CSIC. Repositorio Institucional del CSIC
oai:digital.csic.es:10261/359641

Advanced search