RIZORREMEDIACION ASISTIDA CON NANOPARTICULAS PARA LA RECUPERACION DE SUELOS CON CONTAMINACION MIXTA: FISIOLOGIA DEL CULTIVO Y REMEDIACION

AGL2015-64481-C2-1-R

Nombre agencia financiadora Ministerio de Economía y Competitividad
Acrónimo agencia financiadora MINECO
Programa Programa Estatal de I+D+I Orientada a los Retos de la Sociedad
Subprograma Todos los retos
Convocatoria Proyectos de I+D+I dentro del Programa Estatal Retos de la Sociedad (2015)
Año convocatoria 2015
Unidad de gestión Dirección General de Investigación Científica y Técnica
Centro beneficiario UNIVERSIDAD DEL PAIS VASCO EUSKAL HERRIKO UNIBERTSITATEA
Centro realización DPTO. BIOLOGIA VEGETAL Y ECOLOGIA
Identificador persistente http://dx.doi.org/10.13039/501100003329

Publicaciones

Resultados totales (Incluyendo duplicados): 2
Encontrada(s) 1 página(s)

Foliar heavy metals and stable isotope (δ13C, δ15N) profiles as reliable urban pollution biomonitoring tools

Repositori Obert UdL
  • Soba, David
  • Gámez, Angie L.
  • Úriz, Naroa
  • Ruiz de Larrinaga, Lorena
  • Gonzalez-Murua, Carmen
  • Becerril, José María
  • Esteban, Raquel
  • Serret Molins, M. Dolors
  • Araus Ortega, José Luis
  • Aranjuelo Michelena, Iker
Anthropogenic heavy metal pollution is an important health issue in urban areas, and therefore rapid and inexpensive monitoring in time and space is desirable. This study aimed (i) to assess the suitability of Tilia cordata leaves as a valuable heavy metal bioindicator, including seasonal changes in concentrations and (ii) to evaluate the use of leaf carbon and nitrogen isotope composition (δ13C and δ15N) as novel indicators of urban heavy metal pollution. Leaves were collected from three different pollution intensity locations (Bilbao, Vitoria, and Muskiz) in the Basque Country (northern Spain). Analysis of leaf heavy metals related to traffic emissions and δ13C and δ15N determinations were carried out during July-October 2018. Leaf samples from Bilbao, the most populated and traffic-intense location, showed the highest concentration of heavy metals (mainly from polluted air). Additionally, the two urban areas, Bilbao and Vitoria, showed stronger correlation between these heavy metals, indicating a traffic-related source of emissions. The source of contamination (soil or air) in relation to elements and optimal sampling time is discussed herein. On the other hand, Pearson correlation analysis revealed significant trends between leaf δ13C and δ15N and the studied heavy metals, especially Pb, Cr and Cd, supporting the hypothesis of δ13C and δ15N as tools to distinguish locations according to their heavy metal pollution levels. To our knowledge, this is the first time that δ13C and δ15N have been used as monitoring tools in heavy metal pollution and consequently more research is still needed to calibrate this tool through extensive vegetation screening., This research was supported by the Spanish Government [AGL 2015-64481-C2-1-R] and the Basque Government [UPV/EHU-GV IT-1018-16]. RE received a Juan de la Cierva incorporation contract IJCI-2014-21452.




Foliar heavy metals and stable isotope (δ13C, δ15N) profiles as reliable urban pollution biomonitoring tools

Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
  • Soba Hidalgo, David
  • Gámez Guzmán, Angie Lorena
  • Úriz, Naroa
  • Ruiz de Larrinaga, Lorena
  • González Murua, Carmen
  • Becerril, José María
  • Esteban Terradillos, Raquel
  • Serret, Dolors
  • Araus, José Luis
  • Aranjuelo Michelena, Iker
Incluye material complementario, Anthropogenic heavy metal pollution is an important health issue in urban areas, and therefore rapid and inexpensive monitoring in time and space is desirable. This study aimed (i) to assess the suitability of Tilia cordata leaves as a valuable heavy metal bioindicator, including seasonal changes in concentrations and (ii) to evaluate the use of leaf carbon and nitrogen isotope composition (δ13C and δ15N) as novel indicators of urban heavy metal pollution. Leaves were collected from three different pollution intensity locations (Bilbao, Vitoria, and Muskiz) in the Basque Country (northern Spain). Analysis of leaf heavy metals related to traffic emissions and δ13C and δ15N determinations were carried out during July-October 2018. Leaf samples from Bilbao, the most populated and traffic-intense location, showed the highest concentration of heavy metals (mainly from polluted air). Additionally, the two urban areas, Bilbao and Vitoria, showed stronger correlation between these heavy metals, indicating a traffic-related source of emissions. The source of contamination (soil or air) in relation to elements and optimal sampling time is discussed herein. On the other hand, Pearson correlation analysis revealed significant trends between leaf δ13C and δ15N and the studied heavy metals, especially Pb, Cr and Cd, supporting the hypothesis of δ13C and δ15N as tools to distinguish locations according to their heavy metal pollution levels. To our knowledge, this is the first time that δ13C and δ15N have been used as monitoring tools in heavy metal pollution and consequently more research is still needed to calibrate this tool through extensive vegetation screening., This research was supported by the Spanish Government [AGL 2015-64481-C2-1-R] and the Basque Government [UPV/EHU-GV IT-1018-16]. RE received a Juan de la Cierva incorporation contract IJCI-2014-21452.