RECONOCIMIENTO DE LIGANDOS Y SEÑALES ELECTRICAS EN CANALES BIOLOGICOS A NIVEL MOLECULAR

FIS2013-40473-P

Nombre agencia financiadora Ministerio de Economía y Competitividad
Acrónimo agencia financiadora MINECO
Programa Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia
Subprograma Subprograma Estatal de Generación del Conocimiento
Convocatoria Proyectos de I+D dentro del Subprograma Estatal de Generación del Conocimiento (2013)
Año convocatoria 2013
Unidad de gestión Dirección General de Investigación Científica y Técnica
Centro beneficiario UNIVERSITAT JAUME I (UJI) / UNIVERSIDAD DE JAIME I (UJI)
Centro realización ESCUELA SUPERIOR DE TECNOLOGÍA Y CIENCIAS EXPERIMENTALES - DEPARTAMENTO DE FÍSICA
Identificador persistente http://dx.doi.org/10.13039/501100003329

Publicaciones

Resultados totales (Incluyendo duplicados): 1
Encontrada(s) 1 página(s)

Acidification asymmetrically affects voltage-dependent anion channel implicating the involvement of salt bridges

Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
  • Teijido Hermida, Óscar
  • Rappaport, Shay M.
  • Chamberlin, Adam
  • Noskov, Sergei Y.
  • Aguilella, Vicente M.
  • Rostovtseva, Tatiana K.
  • Bezrukov, Sergey M.
The voltage-dependent anion channel (VDAC) is the major pathway for ATP, ADP, and other respiratory substrates through the mitochondrial outer membrane, constituting a crucial point of mitochondrial metabolism regulation. VDAC is characterized by its ability to 'gate' between an open and several 'closed' states under applied voltage. In the early stages of tumorigenesis or during ischemia, partial or total absence of oxygen supply to cells results in cytosolic acidification. Motivated by these facts, we investigated the effects of pH variations on VDAC gating properties. We reconstituted VDAC into planar lipid membranes and found that acidification reversibly increases its voltage-dependent gating. Furthermore, both VDAC anion selectivity and single channel conductance increased with acidification, in agreement with the titration of the negatively charged VDAC residues at low pH values. Analysis of the pH dependences of the gating and open channel parameters yielded similar pKa values close to 4.0. We also found that the response of VDAC gating to acidification was highly asymmetric. The presumably cytosolic (cis) side of the channel was the most sensitive to acidification, whereas the mitochondrial intermembrane space (trans) side barely responded to pH changes. Molecular dynamic simulations suggested that stable salt bridges at the cis side, which are susceptible to disruption upon acidification, contribute to this asymmetry. The pronounced sensitivity of the cis side to pH variations found here in vitro might provide helpful insights into the regulatory role of VDAC in the protective effect of cytosolic acidification during ischemia in vivo., This work was supported, in whole or in part, by National Institutes of Health Intramural Research Program of the Eunice Kennedy Shriver NICHD. This work was also supported by National Sciences and Engineering Research Council Discovery Grant RGPIN-315019 (to S. Y. N.). Alberta Innovates Technology Futures New Faculty, Canadian Institute for Health Research New Investigator, and an Alberta Innovates Health Solutions Scholar. Supported by Spanish MINECO Grant FIS2013-40473, Universitat Jaume I-Fundació Caixa Castelló -Bancaixa Grant P1-1B2012-03, and Generalitat Valenciana Grant Prometeu/2012/069.