INTEGRADORES TEMPORALES PARA PROBLEMAS DIFERENCIALES. PROPIEDADES CUALITATIVAS, METODOS IMPLICITOS-EXPLICITOS Y APLICACIONES
MTM2014-53178-P
•
Nombre agencia financiadora Ministerio de Economía y Competitividad
Acrónimo agencia financiadora MINECO
Programa Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia
Subprograma Subprograma Estatal de Generación del Conocimiento
Convocatoria Proyectos de I+D dentro del Subprograma Estatal de Generación del Conocimiento (2014)
Año convocatoria 2014
Unidad de gestión Dirección General de Investigación Científica y Técnica
Centro beneficiario UNIVERSIDAD PÚBLICA DE NAVARRA (UPNA)
Centro realización DPTO. DE INGENIERIA MATEMATICA E INFORMATICA
Identificador persistente http://dx.doi.org/10.13039/501100003329
Publicaciones
Resultados totales (Incluyendo duplicados): 4
Encontrada(s) 1 página(s)
Encontrada(s) 1 página(s)
Convergent expansions of the confluent hypergeometric functions in terms of elementary functions
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
- Bujanda Cirauqui, Blanca
- López García, José Luis
- Pagola Martínez, Pedro Jesús
We consider the confluent hypergeometric function M(a, b; z) for z ∈ C and Rb >Ra > 0, and the confluent hypergeometric function U(a, b; z) for b ∈ C, Ra > 0, and Rz > 0. We derive two convergent expansions of M(a, b; z); one of them in terms of incomplete gamma functions γ(a, z) and another one in terms of rational functions of ez and z. We also derive a convergent expansion of U(a, b; z) in terms of incomplete gamma functions γ(a, z) and Γ(a, z). The expansions of M(a, b; z) hold uniformly in either Rz ≥ 0 or Rz ≤ 0; the expansion of U(a, b; z) holds uniformly in Rz > 0. The accuracy of the approximations is illustrated by means of some numerical experiments., This research was supported by the Spanish Ministry of Economía y Competitividad, projects MTM2014-53178-P and TEC2013-45585-C2-1-R. The Universidad Pública de Navarra is acknowledged for its financial support.
Convergent expansions of the incomplete gamma functions in terms of elementary functions
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
- Bujanda Cirauqui, Blanca
- López García, José Luis
- Pagola Martínez, Pedro Jesús
We consider the incomplete gamma function γ(a,z) for Ra>0 and z∈C. We derive several convergent expansions of z−aγ(a,z) in terms of exponentials and rational functions of z that hold uniformly in z with Rz bounded from below. These expansions, multiplied by ez, are expansions of ezz−aγ(a,z) uniformly convergent in z with Rz bounded from above. The expansions are accompanied by realistic error bounds., This research was supported by the Spanish Ministry of Economía y Competitividad, projects
MTM2014-53178-P and TEC2013-45585-C2-1-R. The Universidad Pública de Navarra is
acknowledged by its financial support.
MTM2014-53178-P and TEC2013-45585-C2-1-R. The Universidad Pública de Navarra is
acknowledged by its financial support.
Order barrier for low-storage DIRK methods with positive weights
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
- Higueras Sanz, Inmaculada
- Roldán Marrodán, Teodoro
In this paper we study an order barrier for low-storage diagonally implicit Runge-Kutta (DIRK) methods with positive weights. The Butcher matrix for these schemes, that can be implemented with only two memory registers in the van der Houwen implementation, has a special structure that restricts the number of free parameters of the method. We prove that third order low-storage DIRK methods must contain negative weights, obtaining the order barrier p ≤ 2 for these schemes. This result extends the well known one for symplectic DIRK methods, which are a particular case of low-storage DIRK methods. Some other properties of second order low-storage DIRK methods are given., Supported by Ministerio de Economía y Competividad, project MTM-2014-53178-P.
Proyecto: MINECO//MTM2014-53178-P
Optimal monotonicity-preserving perturbations of a given Runge–Kutta method
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
- Higueras Sanz, Inmaculada
- Ketcheson, David I.
- Kocsis, Tihamér A.
Perturbed Runge–Kutta methods (also referred to as downwind Runge–Kutta methods) can guarantee monotonicity preservation under larger step sizes relative to their traditional Runge–Kutta counterparts. In this paper we study the question of how to optimally perturb a given method in order to increase the radius of absolute monotonicity (a.m.). We prove that for methods with zero radius of a.m., it is always possible to give a perturbation with positive radius. We first study methods for linear problems and then methods for nonlinear problems. In each case, we prove upper bounds on the radius of a.m., and provide algorithms to compute optimal perturbations. We also provide optimal perturbations for many known methods., Inmaculada Higueras was supported by Ministerio de Economía y Competividad, Spain, Projects MTM2014-53178-P and MTM2016-77735-C3-2-P. David I. Ketcheson and Tihamér A. Kocsis were supported by KAUST Award No. FIC/2010/05-2000000231. Tihamér A. Kocsis was also supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0012: Basic research for the development of hybrid and electric vehicles, supported by the Hungarian Government and co-financed by the European Social Fund.