ORTOGONALIDAD, TEORIA DE LA APROXIMACION Y APLICACIONES EN FISICA MATEMATICA
MTM2015-65888-C4-4-P
•
Nombre agencia financiadora Ministerio de Economía y Competitividad
Acrónimo agencia financiadora MINECO
Programa Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia
Subprograma Subprograma Estatal de Generación del Conocimiento
Convocatoria Proyectos de I+D dentro del Subprograma Estatal de Generación del Conocimiento (2015)
Año convocatoria 2015
Unidad de gestión Dirección General de Investigación Científica y Técnica
Centro beneficiario UNIVERSIDAD DE LA RIOJA (UR)
Centro realización DPTO. CIENCIAS HUMANAS Y SOCIALES
Identificador persistente http://dx.doi.org/10.13039/501100003329
Publicaciones
Found(s) 3 result(s)
Found(s) 1 page(s)
Found(s) 1 page(s)
A note on Appell sequences, Mellin transforms and Fourier series
Zaguán. Repositorio Digital de la Universidad de Zaragoza
- Navas, L.M.
- Ruiz, F.J.
- Varona, J.L.
A large class of Appell polynomial sequences {p n (x)} n=0 8 are special values at the negative integers of an entire function F(s, x), given by the Mellin transform of the generating function for the sequence. For the Bernoulli and Apostol-Bernoulli polynomials, these are basically the Hurwitz zeta function and the Lerch transcendent. Each of these have well-known Fourier series which are proved in the literature using various techniques. Here we find the latter Fourier series by directly calculating the coefficients in a straightforward manner. We then show that, within the context of Appell sequences, these are the only cases for which the polynomials have uniformly convergent Fourier series. In the more general context of Sheffer sequences, we find that there are other polynomials with uniformly convergent Fourier series. Finally, applying the same ideas to the Fourier transform, considered as the continuous analog of the Fourier series, the Hermite polynomials play a role analogous to that of the Bernoulli polynomials.
Existence and reduction of generalized apostol-bernoulli, apostol-euler and apostol-genocchi polynomials
Zaguán. Repositorio Digital de la Universidad de Zaragoza
- Navas, L.M.
- Ruiz, F.J.
- Varona, J.L.
One can find in the mathematical literature many recent papers studying the generalized Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials, defined by means of generating functions. In this article we clarify the range of parameters in which these definitions are valid and when they provide essentially different families of polynomials. In particular, we show that, up to multiplicative constants, it is enough to take as the “main family” those given by \[ \Big ( \frac{2}{\lambda e^t+1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{E}^{(\alpha )}_{n}(x;\lambda ) \frac{t^n}{n!}\,, \qquad \lambda \in \mathbb{C}\setminus \lbrace -1\rbrace \,, \] and as an “exceptional family” \[ \Big ( \frac{t}{e^t-1} \Big )^\alpha e^{xt} = \sum _{n=0}^{\infty } \mathcal{B}^{(\alpha )}_{n}(x) \frac{t^n}{n!}\,, \] both of these for $\alpha \in \mathbb{C}$.
Unconditional and quasi-greedy bases in L-p with applications to Jacobi polynomials Fourier series
Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
- Albiac Alesanco, Fernando José
- Ansorena, José L.
- Ciaurri, Óscar
- Varona, Juan L.
We show that the decreasing rearrangement of the Fourier series with respect to the Jacobi polynomials for functions in L-p does not converge unless p = 2. As a by-product of our work on quasi-greedy bases in L-p(µ), we show that no normalized unconditional basis in L-p, p not equal 2, can be semi-normalized in L-q for q not equal p, thus extending a classical theorem of Kadets and Pelczynski from 1968., The first two authors were partially supported by the Spanish Research Grant Analisis Vectorial, Multilineal y Aplicaciones, reference number MTM2014-53009-P, and the last two authors were partially supported by the Spanish Research Grant Ortogonalidad, Teoria de la Aproximacion y Aplicaciones en Fisica Matematica, reference number MTM2015-65888-C4-4-P. The first-named author also acknowledges the support of Spanish Research Grant Operators, lattices, and structure of Banach spaces, with reference MTM2016-76808-P.