ACTIVIDAD SINCRONICA EN NEURONAS ESPINALES E INHIBICION PRESINAPTICA: IMPLICACIONES PARA EL DOLOR CRONICO
PID2021-126330OB-I00
•
Nombre agencia financiadora Agencia Estatal de Investigación
Acrónimo agencia financiadora AEI
Programa Programa Estatal para Impulsar la Investigación Científico-Técnica y su Transferencia
Subprograma Subprograma Estatal de Generación de Conocimiento
Convocatoria Proyectos de I+D+I (Generación de Conocimiento y Retos Investigación)
Año convocatoria 2021
Unidad de gestión Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023
Centro beneficiario UNIVERSIDAD DE ALCALA
Identificador persistente http://dx.doi.org/10.13039/501100011033
Publicaciones
Found(s) 4 result(s)
Found(s) 1 page(s)
Found(s) 1 page(s)
Synchronous firing of dorsal horn neurons at the origin of dorsal root reflexes in naïve and paw-inflamed mice
e-cienciaDatos, Repositorio de Datos del Consorcio Madroño
- Rivera Arconada, Iván
- López García, José Antonio
- Lucas Romero, Javier de
Datos analizados de registros electrofisiológicos crudos que estudian actividad espontánea de neuronas espinales in vitro. Datos de test de comportamiento realizados en los animales estudiados.
El proyecto estudia las características funcionales de neuronas de la médula espinal de animales de experimentación. Estos datos servirán para conocer como funcionan los circuitos medulares en los que participan estas neuronas e identificar diferencias en su funcionamiento individual o conjunto en respuesta a procesos patológicos producidos por inflamación. Como complemento a esta información también se podrán recopilar datos histológicos y sobre comportamiento de los animales.
El proyecto estudia las características funcionales de neuronas de la médula espinal de animales de experimentación. Estos datos servirán para conocer como funcionan los circuitos medulares en los que participan estas neuronas e identificar diferencias en su funcionamiento individual o conjunto en respuesta a procesos patológicos producidos por inflamación. Como complemento a esta información también se podrán recopilar datos histológicos y sobre comportamiento de los animales.
Proyecto: MICINN//PID2021-126330OB-I00
Noise or signal? Spontaneous activity of dorsal horn neurons: patterns and function in health and disease
e_Buah Biblioteca Digital Universidad de Alcalá
- Lucas Romero, Javier De|||0000-0003-3590-538X
- Rivera Arconada, Iván|||0000-0002-9845-6625
- López García, José Antonio|||0000-0002-1725-6665
16 p., Spontaneous activity refers to the firing of action potentials by neurons in the absence of external stimulation. Initially considered an artifact or ?noise? in the nervous system, it is now recognized as a potential feature of neural function. Spontaneous activity has been observed in various brain areas, in experimental preparations from different animal species, and in live animals and humans using non-invasive imaging techniques. In this review, we specifically focus on the spontaneous activity of dorsal horn neurons of the spinal cord. We use a historical perspective to set the basis for a novel classification of the different patterns of spontaneous activity exhibited by dorsal horn neurons. Then we examine the origins of this activity and propose a model circuit to explain how the activity is generated and transmitted to the dorsal horn. Finally, we discuss possible roles of this activity during development and during signal processing under physiological conditions and pain states. By analyzing recent studies on the spontaneous activity of dorsal horn neurons, we aim to shed light on its significance in sensory processing. Understanding the different patterns of activity, the origins of this activity, and the potential roles it may play, will contribute to our knowledge of sensory mechanisms, including pain, to facilitate the modeling of spinal circuits and hopefully to explore novel strategies for pain treatment., Ministerio de Ciencia e Innovación, Unión Europea, FEDER
Adrenergic and serotonergic modulation of coordinated spontaneous activity of dorsal horn neurons [Póster]
e_Buah Biblioteca Digital Universidad de Alcalá
- Lucas Romero, Javier De|||0000-0003-3590-538X
- Jaén Castaño, Marta
- Rivera Arconada, Iván|||0000-0002-9845-6625
- López García, José Antonio|||0000-0002-1725-6665
IBRO 2023. 11th Word Congress of Neuroscience, 9-13 september 2023, Granada, Spain, Esta publicación es parte del proyecto de I+D+i PID2021-126330OB-I00, financiado por MICIU/AEI/10.13039/501100011033/ y por “FEDER Una manera de hacer Europa”, The spinal dorsal horn receives and integrates a wide variety of somatosensory inputs and is particularly relevant for nociceptive information. This area receives signals directly from the periphery via primary afferents, but also descending inputs from higher centres that modulate the incoming information and the processing by intraspinal circuits (1). Serotoninergic and adrenergic descending systems are two modulatory systems that can have both facilitatory and inhibitory effects on dorsal horn neurons (DHNs) and nociceptive processing (2). The presence of spontaneous activity in spinal circuits has been reported under in vivo and in vitro conditions and may play a fundamental role in the processing of nociceptive information by modulating the excitability of the spinal circuits. Our aim was to investigate the modulatory role of the adrenergic and serotonergic descending systems on the spontaneous activity of DHNs, the occurrence of coordinated activity in spinal circuits and the generation of dorsal root potentials in primary afferents., Agencia Estatal de Investigación
Central terminals of primary afferents as synchronizing element in spinal cord circuits
e_Buah Biblioteca Digital Universidad de Alcalá
- Rivera Arconada, Iván|||0000-0002-9845-6625
- Lucas Romero, Javier de|||0000-0003-3590-538X
- López García, José Antonio|||0000-0002-1725-6665
Neuroscience 2024, 05/10/2024-09/10/2024, Chicago, Estados Unidos., Primary afferents are responsible for transmitting the sensory information generated at peripheral receptors to the spinal cord. However, before this information reaches second-order neurons, it can be modulated by presynaptic contacts from dorsal horn neurons. These presynaptic contacts can regulate neurotransmitter release by modifying the excitability of synaptic terminals and thus the efficiency of information transmission. Using opto- and chemogenetic techniques, we wanted to investigate how changes in the excitability of primary afferent terminals can modify spontaneous activity in spinal cord circuits. These studies were carried out using in vitro spinal cord preparations from neonatal mice expressing channelrhodopsin-2 (ChR2), Archaerhodopsin-3 (ArchT) and hM4Di-DREADD in primary afferent neurons under the control of the advillin promoter. Glass suction electrodes were used to record dorsal root activity, while multi-electrode arrays were used to record the activity of neurons in the dorsal horn. An adjacent dorsal root was electrically stimulated to activate primary afferents and generate synaptic responses in both the recording root and dorsal horn neurons. ChR2 activation by light at 455nm caused a depolarization in the afferents contained within the root, together with abolition of spontaneous dorsal root potentials (sDRPs). There was also an increase in the spontaneous firing of most dorsal horn neurons, but this enhancement was accompanied by a loss of coordination between neurons. Activation of hM4Di-DREADD with clozapine N-oxide led to a reduction in sDRP and in the firing frequency of dorsal horn neurons, with a concomitant loss of coordinated activity. On the other hand, ArchT stimulation with light at 567nm hyperpolarized the afferents in the dorsal root and increased sDRP amplitude. The activity of dorsal horn neurons showed a moderate increase during afferent hyperpolarization with an enhancement of coordinated activity. The responses produced by the electrical stimulation of an adjacent dorsal root were inhibited by both depolarization and hM4Di-DREADD activation, but were unchanged during the hyperpolarization induced by ArchT. These results show that the ability of primary afferents to transmit information can be strongly regulated by acting at their central terminals inside the cord. Primary afferents terminals work as an essential component in maintaining coordination in the spontaneous activity of spinal circuits, contributing to adjust their excitability., Agencia Estatal de Investigación