EVALUACION DE LA OPERATIVIDAD DE LOS VEHICULOS AUTOMATIZADOS ANTE LAS CONDICIONES DE LA INFRAESTRUCTURA FISICA DE CARRETERAS Y LA PERCEPCION HUMANA
PID2021-127183OA-I00
•
Nombre agencia financiadora Agencia Estatal de Investigación
Acrónimo agencia financiadora AEI
Programa Programa Estatal para Impulsar la Investigación Científico-Técnica y su Transferencia
Subprograma Subprograma Estatal de Generación de Conocimiento
Convocatoria Proyectos de I+D+I (Generación de Conocimiento y Retos Investigación)
Año convocatoria 2021
Unidad de gestión Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023
Centro beneficiario UNIVERSITAT POLITÈCNICA DE VALÈNCIA
Identificador persistente http://dx.doi.org/10.13039/501100011033
Publicaciones
Resultados totales (Incluyendo duplicados): 1
Encontrada(s) 1 página(s)
Encontrada(s) 1 página(s)
EVACH Naturalistic driving and simulation testing datasets 2025
RiuNet. Repositorio Institucional de la Universitat Politécnica de Valéncia
- Dols Ruiz, Juan Francisco
- López Maldonado, Griselda
- Moll, Sara
- Camacho, Francisco J.
[EN] The integration of autonomous vehicles (AVs) into road transport requires robust ex-perimental tools to analyze human–machine interaction, particularly under conditions of system disengagement. This study presents the development and validation of the EVACH autonomous driving simulator, designed to reproduce SAE Level 2 and Level 3 driving modes in rural road scenarios. The simulator was customized through hardware and software developments, including a dedicated data acquisition system to ensure accurate detection of braking, steering, and other critical control inputs. Calibration tests demonstrated high reliability, with minor errors in brake and steering control meas-urements, consistent with values observed in production vehicles. To validate the virtual driving rural environment, comparative experiments were conducted between natu-ralistic road tests and simulator-based autonomous driving. Results showed that average speeds in simulation closely matched those recorded on real roads, with differences of less than 1 km/h and significantly lower variability. These findings confirm that the EVACH simulator provides a stable and faithful reproduction of autonomous driving conditions. The platform represents a validated and versatile tool for evaluating driver workload, takeover performance, and human–machine interaction, offering valuable support for current and future research on the safe deployment of automated vehicles.