EL ROL DE LA IMPRECISION EN LA AGREGACION DE INFORMACION ASIGNADA POR EXPERTOS
PID2022-140585NB-I00
•
Nombre agencia financiadora Agencia Estatal de Investigación
Acrónimo agencia financiadora AEI
Programa Programa Estatal para Impulsar la Investigación Científico-Técnica y su Transferencia
Subprograma Subprograma Estatal de Generación de Conocimiento
Convocatoria Proyectos de I+D+I (Generación de Conocimiento y Retos Investigación)
Año convocatoria 2022
Unidad de gestión Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023
Centro beneficiario UNIVERSIDAD DE OVIEDO
Identificador persistente http://dx.doi.org/10.13039/501100011033
Publicaciones
Resultados totales (Incluyendo duplicados): 3
Encontrada(s) 1 página(s)
Encontrada(s) 1 página(s)
Inner approximations of coherent lower probabilities and their application to decision making problems
RUO. Repositorio Institucional de la Universidad de Oviedo
- Miranda Menéndez, Enrique
- Montes Gutiérrez, Ignacio
- Presa, Andrés
The research in this paper has benefited from discussions with Damjan Skulj, Barbara
Vantaggi, Davide Petturiti, Jasper de Bock and Max Nendel. We also acknowledge the financial support by
project PID2022-140585NB-I00 from the Spanish Ministry of Science and Innovation.
Vantaggi, Davide Petturiti, Jasper de Bock and Max Nendel. We also acknowledge the financial support by
project PID2022-140585NB-I00 from the Spanish Ministry of Science and Innovation.
Gaussian Markov Random fields over graphs of paths and high relative accuracy
Zaguán. Repositorio Digital de la Universidad de Zaragoza
- Baz, Juan
- Alonso, Pedro
- Peña, Juan Manuel
- Pérez-Fernández, Raúl
The present paper presents some results that allow us to perform with High Relative Accuracy linear algebra operations with correlation and covariance matrices of Gaussian Markov Random Fields over graphs of paths. Some numerical experiments are carried out showing the computational benefits of this approach.
Estimation of the covariance matrix of a Gaussian Markov Random Field under a total positivity constraint
Zaguán. Repositorio Digital de la Universidad de Zaragoza
- Baz, Juan
- Alonso, Pedro
- Peña, Juan Manuel
- Pérez-Fernández, Raúl
Gaussian Markov Random Fields are a popular statistical model that has been used successfully in many fields of application. Recent work has studied conditions under which the covariance matrix of a Gaussian Markov Random Field over a graph of paths is totally positive. In such case, many linear algebra operations concerning the covariance matrix can be performed with High Relative Accuracy (the relative error is of order of machine precision). Unfortunately, classical estimators of the covariance matrix do not necessarily yield a totally positive matrix, even when the population covariance matrix is totally positive. Essentially, this inconvenience prevents the available High Relative Accuracy methods to be used with real-life data. Here, we present a method for the estimation of the covariance matrix of a Gaussian Markov Random Field over a graph of paths assuring the estimated covariance matrix (or its inverse) is totally positive.