TEORIA CUANTICA DE ANTENAS PARA FUENTES DE LUZ NO-CLASICA

RTI2018-093714-J-I00

Nombre agencia financiadora Agencia Estatal de Investigación
Acrónimo agencia financiadora AEI
Programa Programa Estatal de I+D+i Orientada a los Retos de la Sociedad
Subprograma Programa Estatal de I+D+i Orientada a los Retos de la Sociedad
Convocatoria Retos Investigación: Proyectos I+D+i
Año convocatoria 2018
Unidad de gestión Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020
Centro beneficiario UNIVERSIDAD PUBLICA DE NAVARRA
Identificador persistente http://dx.doi.org/10.13039/501100011033

Publicaciones

Found(s) 1 result(s)
Found(s) 1 page(s)

Silicon carbide as a material-based high-impedance surface for enhanced absorption within ultra-thin metallic films

Academica-e. Repositorio Institucional de la Universidad Pública de Navarra
  • 0000-0001-5858-1045
  • Buldain, Iban
  • 0000-0001-8370-0034
  • 0000-0001-5891-1446
  • 0000-0003-1798-8513
The absorption of infrared radiation within ultra-thin metallic films is technologically relevant for different thermal engineering applications and optoelectronic devices, as well as for fundamental research on sub-nanometer and atomically-thin materials. However, the maximal attainable absorption within an ultra-thin metallic film is intrinsically limited by both its geometry and material properties. Here, we demonstrate that material-based high-impedance surfaces enhance the absorptivity of the films, potentially leading to perfect absorption for optimal resistive layers, and a fourfold enhancement for films at deep nanometer scales. Moreover, material-based high-impedance surfaces do not suffer from spatial dispersion and the geometrical restrictions of their metamaterial counterparts. We provide a proof-of-concept experimental demonstration by using titanium nanofilms on top of a silicon carbide substrate., Horizon 2020 Framework Programme (ATTRACT ENZSICSENS); Ministerio de Ciencia, Innovación y Universidades (RTI2018-093714-301 J-I00, RYC2018-024123-I).