SOSTENIBILIDAD DE ECOSISTEMAS COSTEROS MARINOS EN EL CONTEXTO DEL CAMBIO GLOBAL EN EL MEDITERRANEO

RTI2018-095441-B-C21

Nombre agencia financiadora Agencia Estatal de Investigación
Acrónimo agencia financiadora AEI
Programa Programa Estatal de I+D+i Orientada a los Retos de la Sociedad
Subprograma Programa Estatal de I+D+i Orientada a los Retos de la Sociedad
Convocatoria Retos Investigación: Proyectos I+D+i
Año convocatoria 2018
Unidad de gestión Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020
Centro beneficiario AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS (CSIC)
Identificador persistente http://dx.doi.org/10.13039/501100011033

Publicaciones

Found(s) 29 result(s)
Found(s) 1 page(s)

Species traits and geomorphic setting as drivers of global soil carbon stocks in seagrass meadows

Dipòsit Digital de Documents de la UAB
  • Kennedy, Hilary|||0000-0003-2290-2120
  • Pagès, Jordi|||0000-0001-9346-8312
  • Lagomasino, D.
  • Arias Ortiz, Ariane|||0000-0001-9408-0061
  • Colarusso, Phil
  • Fourqurean, James|||0000-0002-0811-8500
  • Githaiga, M. N.
  • Howard, J. L.
  • Krause-Jensen, D.
  • Kuwae, Tomohiro
  • Lavery, Paul S|||0000-0001-5162-273X
  • Macreadie, Peter I|||0000-0001-7362-0882
  • Marbà, Núria|||0000-0002-8048-6789
  • Masqué Barri, Pere|||0000-0002-1789-320X
  • Mazarrasa, Inés|||0000-0002-5476-9953
  • Miyajima, Toshihiro|||0000-0001-8562-6704
  • Serrano, Oscar|||0000-0002-5973-0046
  • Duarte, Carlos M.|||0000-0002-1213-1361
Our knowledge of the factors that can influence the stock of organic carbon (OC) that is stored in the soil of seagrass meadows is evolving, and several causal effects have been used to explain the variation of stocks observed at local to national scales. To gain a global-scale appreciation of the drivers that cause variation in soil OC stocks, we compiled data on published species-specific traits and OC stocks from monospecific and mixed meadows at multiple geomorphological settings. Species identity was recognized as an influential driver of soil OC stocks, despite their large intraspecific variation. The most important seagrass species traits associated with OC stocks were the number of leaves per seagrass shoot, belowground biomass, leaf lifespan, aboveground biomass, leaf lignin, leaf breaking force and leaf OC plus the coastal geomorphology of the area, particularly for lagoon environments. A revised estimate of the global average soil OC stock to 20 cm depth of 15.4 Mg C ha−1 is lower than previously reported. The largest stocks were still recorded in Mediterranean seagrass meadows. Our results specifically identify Posidonia oceanica from the Mediterranean and, more generally, large and persistent species as key in providing climate regulation services, and as priority species for conservation for this specific ecosystem service.




On the Impact of the Caribbean Counter Current in the Guajira Upwelling System

RUA. Repositorio Institucional de la Universidad de Alicante
  • Orfila, Alejandro
  • Urbano-Latorre, Claudia P.
  • Sayol, Juan Manuel
  • Gonzalez-Montes, Stephanie
  • Caceres-Euse, Alejandro
  • Hernández-Carrasco, Ismael
  • Muñoz, Ángel G.
The variability of La Guajira upwelling system, in the south-central Caribbean Sea, is strongly influenced by the intensity and location of the atmospheric Caribbean Low-Level Jet (CLLJ), a near-surface branch of the easterlies, as well as by the regional ocean circulation. During favorable conditions (i.e., strong easterlies blowing almost parallel to the coast), upwelling is enhanced and a large amount of primary productivity occurs in La Guajira area. In contrast, during relatively mild wind conditions, the CLLJ is misaligned to the coast and the Caribbean Counter Current (CCC, locally also known as the Darien Current), which forms as a branch from the Panama-Colombia Gyre, flows northeastward over the continental shelf advecting waters from the southwestern Caribbean basin toward La Guajira. The CCC has a clear signature at the surface layer that extends from the Darien Gulf toward La Guajira peninsula during mild wind periods, while disappears during the months of strong winds. The direction and the magnitude of the easterlies, and more specifically of the CLLJ, control the position and pathway of the CCC, which extends more than 900 km in the southern Caribbean Sea during May, June, August, September, and October. The high concentration of chlorophyll-a at the sea surface evidenced by satellite-based color images is semi-seasonally modulated by the CLLJ, which during its relaxation phase allows the irruption of the CCC toward the east up to La Guajira., AO acknowledge financial support from Ministerio de Ciencia, Innovación y Universidad through MOCCA project (RTI2018-095441-B-C21). JS thanks the funding received from Generalitat Valenciana and the European Social Fund (ESF) under Grant APOSTD/2020/254. IH-C was supported by the Vicenç Mut grant funded by the Government of the Balearic Island and the ESF. AC-E wants to thank the University of Toulon—France for the support during his postdoctoral research. ÁM was partially supported by the NOAA grant NA18OAR4310275.




Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea

RUA. Repositorio Institucional de la Universidad de Alicante
  • Garrabou, Joaquim
  • Gómez-Gras, Daniel
  • Medrano, Alba
  • Cerrano, Carlo
  • Ponti, Massimo
  • Schlegel, Robert
  • Bensoussan, Nathaniel
  • Turicchia, Eva
  • Sini, Maria
  • Gerovasileiou, Vasilis
  • Teixidó, Nuria
  • Mirasole, Alice
  • Tamburello, Laura
  • Cebrian, Emma
  • Rilov, Gil
  • Ledoux, Jean-Baptiste
  • Ben Souissi, Jamila
  • Khamassi, Faten
  • Ghanem, Raouia
  • Benabdi, Mouloud
  • Grimes, Samir
  • Ocaña, Oscar
  • Bazairi, Hocein
  • Hereu, Bernat
  • Linares, Cristina
  • Kersting, Diego K.
  • Rovira, Graciel·la
  • Ortega, Júlia
  • Casals, David
  • Pagès-Escolà, Marta
  • Margarit, Núria
  • Capdevila, Pol
  • Verdura, Jana
  • Ramos-Esplá, Alfonso A.
  • Izquierdo Muñoz, Andrés
  • Barberá, Carmen
  • Rubio-Portillo, Esther
  • Anton, Irene
  • López-Sendino, Paula
  • Díaz, David
  • Vázquez-Luis, Maite
  • Duarte, Carlos M.
  • Marbà, Nuria
  • Aspillaga, Eneko
  • Espinosa, Free
  • Grech, Daniele
  • Guala, Ivan
  • Azzurro, Ernesto
  • Farina, Simone
  • Gambi, Maria Cristina
  • Chimienti, Giovanni
  • Montefalcone, Monica
  • Azzola, Annalisa
  • Pulido Mantas, Torcuato
  • Fraschetti, Simonetta
  • Ceccherelli, Giulia
  • Kipson, Silvija
  • Bakran-Petricioli, Tatjana
  • Petricioli, Donat
  • Jimenez, Carlos
  • Katsanevakis, Stelios
  • Kizilkaya, Inci Tuney
  • Kizilkaya, Zafer
  • Sartoretto, Stephane
  • Elodie, Rouanet
  • Ruitton, Sandrine
  • Comeau, Steeve
  • Gattuso, Jean-Pierre
  • Harmelin, Jean-Georges
Climate change is causing an increase in the frequency and intensity of marine heatwaves (MHWs) and mass mortality events (MMEs) of marine organisms are one of their main ecological impacts. Here, we show that during the 2015–2019 period, the Mediterranean Sea has experienced exceptional thermal conditions resulting in the onset of five consecutive years of widespread MMEs across the basin. These MMEs affected thousands of kilometers of coastline from the surface to 45 m, across a range of marine habitats and taxa (50 taxa across 8 phyla). Significant relationships were found between the incidence of MMEs and the heat exposure associated with MHWs observed both at the surface and across depths. Our findings reveal that the Mediterranean Sea is experiencing an acceleration of the ecological impacts of MHWs which poses an unprecedented threat to its ecosystems' health and functioning. Overall, we show that increasing the resolution of empirical observation is critical to enhancing our ability to more effectively understand and manage the consequences of climate change., French National Research Agency. Grant Number: ANR-17-MPGA-0001; H2020 Environment. Grant Number: SEP-210597628; Interreg Med. Grant Number: 1MED15_3.2_M2_337; Marie Sklodowska-Curie. Grant Number: 801370; Beatriu de Pinós funded by the Secretary of Universities and Research (Government of Catalonia); Ministerio de Ciencia, Innovación y Universidades. Grant Number: RTI2018-095441-B-C21; Spanish Ministries of Economy and Competitiveness. Grant Numbers: CGL2015-71809-P, CTM2012-32603; Greenpeace Italy; National Geographic Society. Grant Number: EC-176R-18; Ente Parco Nazionale del Gargano; Italian Ministry of Education, University and Research. Grant Numbers: AIM 1807508–1, PON 2014–2020; Tropical Signals Program of CIESM; Fondation Albert 2 Monaco (MIMOSA Project); MITERD. Grant Number: CTM2016-77027-R; Departament de Territori i Sostenibilitat of the Generalitat de Catalunya; FCT—Foundation for Science and Technology. Grant Numbers: UIDP/04423/2020, UIDB/04423/2020; FCT/MCTES (PIDDAC); European Regional Development Fund (ERDF); RD Unit. Grant Number: UID/Multi/04423/2019; Regione Autonoma Sardegna. Grant Number: CUP 87G17000070002; Public Investments Programme (PIP) of the Hellenic Republic; EEA GRANTS; MARISCA Project; European Union (European Regional Development Fund, Cohesion Fund); Hellenic Government (Ministry of Development and Investments); CIESM “Tropical Signals,” Stelios Katsanevakis; European Commission; MAVA Fondation; Israel Ministry of Environmental Protection; Stazione Zoologica Anton Dohrn; MCIU/AEI/FEDER. Grant Number: RTI2018-095346-B-I00; Severo Ochoa Centre of Excellence. Grant Number: CEX2019-000928-S; Euromarine.




Organic carbon and environmental DNA in Eastern Mediterranean seagrass sediments

Digital.CSIC. Repositorio Institucional del CSIC
  • Wesselmann, Marlene
  • Geraldi, Nathan R.
  • Duarte, Carlos M.
  • García-Orellana, Jordi
  • Díaz‐Rúa, Rubén
  • Arias-Ortiz, Ariane
  • Hendriks, Iris E.
  • Apostolaki, Eugenia T.
  • Marbà, Núria
Data on biogeochemical characteristics (210Pb geochronologies, density, organic matter, organic carbon concentration, stable carbon isotopes, carbon stocks and carbon burial rates) and on the detection of Halophila stipulacea with eDNA in seagrass sediments cores from H. stipulacea, Cymodocea nodosa and Posidonia oceanica meadows collected in the Eastern Mediterranean (Greece and Cyprus)., This work was funded by the Spanish Ministry of Economy and Competiveness (Project MEDSHIFT, CGL2015-71809-P), the Spanish Ministry of Science, Innovation and Universities (SUMAECO, RTI2018-095441-B-C21) and King Abdullah University for Science and Technology (3834 KAUST-CSIC Research Collaboration and base line funding to CMD)., Peer reviewed




Recruitment Disruption and the Role of Unaffected Populations for Potential Recovery After the Pinna nobilis Mass Mortality Event

Digital.CSIC. Repositorio Institucional del CSIC
  • Kersting, D. K.
  • Vázquez-Luis, Maite
  • Mourre, Baptiste
  • Belkhamssa, F. Z.
  • Álvarez, Elvira
  • Bakran-Petricioli, Tatjana
  • Barberá, Carmen
  • Barrajón, Agustín
  • Cortés, Emilio
  • Deudero, Salud
  • García-March, José R.
  • Giacobbe, Salvatore
  • Giménez Casalduero, F.
  • González, Luis Mariano
  • Jiménez-Gutiérrez, Santiago
  • Kipson, Silvija
  • Llorente, Javier
  • Moreno, Diego
  • Prado, Patricia
  • Pujol, Juan A.
  • Sánchez, Jordi
  • Spinelli, Andrea
  • Valencia, José María
  • Vicente, Nardo
  • Hendriks, Iris E.
A devastating mass mortality event (MME) very likely caused by the protozoan Haplosporidium pinnae first detected in 2016 in the Western Mediterranean Sea, is pushing the endemic bivalve Pinna nobilis to near extinction. Populations recovery, if possible, will rely on larval dispersal from unaffected sites and potential recolonization through recruitment of resistant juveniles. To assess the impact of the MME on the species’ larval recruitment, an unprecedented network of larval collector stations was implemented over several thousands of kilometers along the Western Mediterranean coasts during the 3 years after the onset of the MME. The findings of this network showed a generalized disruption in recruitment with dramatic consequences for the recovery of the species. However, there were exceptions to this pattern and recruits were recorded in a few sites where the resident population had been decimated. This hints to the importance of unaffected populations as larval exporting sources and the role of oceanographic currents in larval transport in the area, representing a beacon of hope in the current extremely worrying scenario for this emblematic species., DK and MV-L were supported by a Juan de la Cierva-Incorporación postdoctoral contract (Spanish Ministry of Science, Innovation and Universities; IJCI-2017-31457 and IJCI-2016-29329, respectively). SK was partially supported by a postdoctoral contract (EU Horizon 2020, Project: MERCES, No. 689518). EÁ was supported by a Technical Support Staff contract (Spanish Ministry of Economy and Competiveness, PTA2015-10829-I). This study was partially funded by: EsMarEs (MITECO), SuMaEco (RTI2018-095441-B-C21, Spanish Ministry of Science, Innovation and Universities) and Prince Albert II of Monaco Foundation (Project BF/HEM 15-1662). The authors acknowledge the MEDCLIC project, funded by “La Caixa” Foundation, contributing to the development of the WMOP hydrodynamic model.




Seagrass (Halophila stipulacea) invasion enhances carbon sequestration in the Mediterranean Sea

Digital.CSIC. Repositorio Institucional del CSIC
  • Wesselmann, Marlene
  • Geraldi, Nathan R.
  • Duarte, Carlos M.
  • García-Orellana, Jordi
  • Díaz‐Rúa, Rubén
  • Arias-Ortiz, Ariane
  • Hendriks, Iris E.
  • Apostolaki, Eugenia T.
  • Marbà, Núria
The introduction and establishment of exotic species often result in significant changes in recipient communities and their associated ecosystem services. However, usually the magnitude and direction of the changes are difficult to quantify because there is no pre-introduction data. Specifically, little is known about the effect of marine exotic macrophytes on organic carbon sequestration and storage. Here, we combine dating sediment cores (210Pb) with sediment eDNA fingerprinting to reconstruct the chronology of pre- and post-arrival of the Red Sea seagrass Halophila stipulacea spreading into the Eastern Mediterranean native seagrass meadows. We then compare sediment organic carbon storage and burial rates before and after the arrival of H. stipulacea and between exotic (H. stipulacea) and native (C. nodosa and P. oceanica) meadows since the time of arrival following a Before-After-Control-Impact (BACI) approach. This analysis revealed that H. stipulacea arrived at the areas of study in Limassol (Cyprus) and West Crete (Greece) in the 1930s and 1970s, respectively. Average sediment organic carbon after the arrival of H. stipulacea to the sites increased in the exotic meadows twofold, from 8.4 ± 2.5 g Corg m−2 year−1 to 14.7 ± 3.6 g Corg m−2 year−1, and, since then, burial rates in the exotic seagrass meadows were higher than in native ones of Cymodocea nodosa and Posidonia oceanica. Carbon isotopic data indicated a 50% increase of the seagrass contribution to the total sediment Corg pool since the arrival of H. stipulacea. Our results demonstrate that the invasion of H. stipulacea may play an important role in maintaining the blue carbon sink capacity in the future warmer Mediterranean Sea, by developing new carbon sinks in bare sediments and colonizing areas previously occupied by the colder thermal affinity P. oceanica., This work was funded by the Spanish Ministry of Economy and Competiveness (Project MEDSHIFT, CGL2015-71809-P), the Spanish Ministry of Science, Innovation and Universities (SUMAECO, RTI2018-095441-B-C21) and King Abdullah University for Science and Technology (3834 KAUST-CSIC Research Collaboration and base line funding to CMD). We thank Ioannis Savva, Julius Glampedakis, Scott Bennet and Raquel Vaquer-Sunyer for field assistance and Joan Manuel Bruach for his work on the analysis of 210Pb dating. MW was supported by a PhD contract (BES-2016-078241) of the Spanish Ministry of Science, Innovation and Universities. AA-O was funded by the NOAA C&GC Postdoctoral Fellowship Program administered by UCAR-CPAESS under award #NA18NWS4620043B., Peer reviewed




On the Impact of the Caribbean Counter Current in the Guajira Upwelling System

Digital.CSIC. Repositorio Institucional del CSIC
  • Orfila, Alejandro
  • Urbano-Latorre, Claudia P.
  • Sayol, Juan Manuel
  • Gonzalez-Montes, Stephanie
  • Cáceres-Euse, Alejandro
  • Hernández Carrasco, Ismael
  • Muñoz, Ángel G.
The variability of La Guajira upwelling system, in the south-central Caribbean Sea, is strongly influenced by the intensity and location of the atmospheric Caribbean Low-Level Jet (CLLJ), a near-surface branch of the easterlies, as well as by the regional ocean circulation. During favorable conditions (i.e., strong easterlies blowing almost parallel to the coast), upwelling is enhanced and a large amount of primary productivity occurs in La Guajira area. In contrast, during relatively mild wind conditions, the CLLJ is misaligned to the coast and the Caribbean Counter Current (CCC, locally also known as the Darien Current), which forms as a branch from the Panama-Colombia Gyre, flows northeastward over the continental shelf advecting waters from the southwestern Caribbean basin toward La Guajira. The CCC has a clear signature at the surface layer that extends from the Darien Gulf toward La Guajira peninsula during mild wind periods, while disappears during the months of strong winds. The direction and the magnitude of the easterlies, and more specifically of the CLLJ, control the position and pathway of the CCC, which extends more than 900 km in the southern Caribbean Sea during May, June, August, September, and October. The high concentration of chlorophyll-a at the sea surface evidenced by satellite-based color images is semi-seasonally modulated by the CLLJ, which during its relaxation phase allows the irruption of the CCC toward the east up to La Guajira., AO acknowledge financial support from Ministerio de Ciencia, Innovación y Universidad through MOCCA project (RTI2018-095441-B-C21). JS thanks the funding received from Generalitat Valenciana and the European Social Fund (ESF) under Grant APOSTD/2020/254. IH-C was supported by the Vicenç Mut grant funded by the Government of the Balearic Island and the ESF. AC-E wants to thank the University of Toulon—France for the support during his postdoctoral research. ÁM was partially supported by the NOAA grant NA18OAR4310275., Peer reviewed




Mediterranean seagrass metabolic rates

Digital.CSIC. Repositorio Institucional del CSIC
  • Hendriks, Iris E.
  • Escolano-Moltó, Anna
  • Vaquer-Sunyer, Raquel
  • Wesselmann, Marlene
  • Flecha, Susana
  • Marbà, Núria
[Geographic location of data collection] Mediterranean basin, seagrass meadows of Posidonia oceanica and Cymodocea nodosa in coastal regions, max. depth 17m., [File List] datacompilation_med_seagrass_metabolic_rates_hendriks.csv, readme.txt., [Relationship between files, if important] readme provides background information for csv datafile., [Additional related data collected that was not included in the current data package] dissolved nutrients for author data (available upon request)., [Description of methods used for collection/generation of data] Data on metabolic rates was extracted from the literature, through a literature search (March 2020) on SCOPUS and the Web of Science using the keywords “Posidonia”, OR “Cymodocea”, OR “Seagrass”, AND “Productivity”, OR “Metabolism” and manually screened for data on metabolism in the Mediterranean basin. This database was extended with unpublished data from the authors and data from dedicated sampling campaigns in 2016 in Mallorca (Western Mediterranean) and 2017 in the Eastern basin (Crete and Cyprus). We compiled data from multiparametric sensors, and data using the benthic chambers methodology with a temporal cover from 1982 to 2019., [Methods for processing the data] For benthic chambers, reported metabolic rates were extracted from the literature. For measurements with multiparametric sensors we used time series of dissolved oxygen (DO, in mg/L), salinity and temperature (C) measured in P. oceanica and/or C. nodosa meadows. With the time series of dissolved oxygen (DO), temperature (°C) and salinity we calculated the metabolic rates of the seagrass habitats using a modification of the model of Coloso et al., (2008) implemented in MATLAB (version 7.5. the Mathworks Inc.) explained in detail in Vaquer-Sunyer et al., (2012).
Wind speed was estimated at each station for the same interval as oxygen measurements to predict k660 (air-sea gas transfer velocity for oxygen at 20º C and salinity 35) based on Kihm et al., (2010) and Cole et al., (1998). Schmidt number equations for seawater according to Wanninkhof (1992) were used for the k calculation from k660. As the cubic model equals the model proposed by Wanninkhof et al., (1999) for short-term winds this parameterization by Kihm et al., (2010) is used. Meteorological data (windspeed) for the deployment period was obtained from the Agencia Estatal de Meteorología (AEMET) for the stations in Mallorca, from the Cyprus Department of Meteorology for Cyprus sampling sites and from the Hellenic National Meteorological Service for the locations in Crete.--, [Standards and calibration information] Sensors were calibrated before each deployment; oxygen sensors (Hach LDOTM) were calibrated using the water saturated air method calibration. For validation of salinity, specific conductance calibrations were performed with 50.000uS/cm buffers. For depth measurements, pressure readings were corrected for specific conductance., [Environmental/experimental conditions] Coastal seagrass meadows with max. 17m depth., [Describe any quality-assurance procedures performed on the data] Negative respiration rates (oxygen production) at night for sensor deployments, were discarded as this was interpreted as an indication for the influence of lateral advection and passing of different water masses. Therefore, we trimmed the dataset to contain only measurements where this influence was not detected.
Respiration rates were notated as oxygen consumption (positive values, literature reports differ in notation)., [People involved with sample collection, processing, analysis and/or submission, please specify using CREDIT roles https://casrai.org/credit/: Conceptual idea IEH and NM. Data collection in the field MW, SF, RVS, IEH, NM. Literature compilation IEH and AEM. Data curation AEM and IEH., [Data-specific information] 1. Number of variables: 21. 2. Number of cases/rows: 151. 3. Variable List: Reference, Journal, Methodology, Year, Month, Season, Site, Region, Latitude, Longitude, Species, Temperature_C, Salinity, Depth, NCP, NCP_SD, CR, CR_SD, GPP, GPP_SD, Wind_m_s. 4. Missing data codes: Empty cell. 5. Specialized formats or other abbreviations used: C (degree Celcius), SD (Standard Deviation), m_s (Meter per second). Depth in meter. Latitude and Longitude in Decimal Degrees (DD)., The data is a compilation of information on metabolic rates of Mediterranean seagrasses obtained by two different methodologies (benthic incubations and multiparametric sensors) from published literature and data from the authors., The Spanish Ministry of Economy and Competitiveness (Project MEDSHIFT, CGL2015-71809-P). Project RTI2018-095441-B-C21 (SUMAECO) from the Spanish Ministry of Science, Universities and Innovation. SF was supported by a “Margalida Comas” postdoctoral scholarship, funded by the Balearic Islands Government. Also funding was received from “projectes de recerca La Caixa en àrees estratègiques” (2018) through a grant to IEH at the University of the Balearic islands., datacompilation_med_seagrass_metabolic_rates_hendriks.csv, readme.txt, Peer reviewed




Mediterranean seagrasses as carbon sinks: Methodological and regional differences

Digital.CSIC. Repositorio Institucional del CSIC
  • Escolano-Moltó, Anna
  • Flecha, Susana
  • Vaquer-Sunyer, Raquel
  • Wesselmann, Marlene
  • Marbà, Núria
  • Hendriks, Iris E.
The increasing rates of CO2 due to anthropogenic activities are causing important potential climate threats for the Mediterranean Sea: ocean acidification and warming. In this region, two seagrass species, Posidonia oceanica and Cymodocea nodosa can play a crucial role in climate change mitigation. Through their metabolic activity, they can act as carbon sinks; buffer lowering pH values during the day and store carbon in the sediment underneath their meadows. In this study we analyse the metabolism synthesized from published data on seagrass community metabolism and from own results to evaluate trends through time of these two species comparing two methodologies: benthic chambers and multiparametric sensors. Furthermore, we analysed seasonal trends of both seagrass species´ metabolic rates and their variation between the Eastern and Western Mediterranean basins, with no significant results despite the clear visual trends. Our analysis revealed that there are significant differences between methodologies, with multiparametric sensors estimating higher rates, but unable to differentiate between habitats and useful to assess seagrass metabolism at a community level whereas benthic chambers are capable to evaluate rates at a seagrass species level. We found significant differences between the two Mediterranean regions for both methodologies, with highest rates of Net Community Production found in the Easter basin. At a species level, we found that Posidonia was more productive compared to Cymodocea. Furthermore, 86.7 % of the metabolic values reflected that the meadows were acting as carbon sinks in the Western basin., This work was funded by the Spanish Ministry of Economy and Competitiveness (Project MEDSHIFT, CGL2015-71809-P) and Project RTI2018-095441-B-C21 (SUMAECO) from the Spanish Ministry of Science, Universities and Innovation., Peer reviewed




Seagrass thermal limits

Digital.CSIC. Repositorio Institucional del CSIC
  • Marbà, Núria
  • Jordá, Gabriel
  • Bennett, Scott
  • Duarte, Carlos M.
The dataset compiles seagrass upper thermal limits (Tlimit) for survival, growth or biomass loss published in the literature and obtained by conducting a search on Web of Knowledge using the keywords combinations seagrass AND (temperature OR warming) and seagrass AND ("thermal limit" OR "thermal threshold" OR "critical temperature" OR "thermal niche”). The reference lists of the papers obtained with these searches were screened for additional relevant data. The dataset only includes data of seagrass populations growing submersed within their native geographical range. Tlimit are derived from empirical observations of seagrass die-off events attributed to heat waves, in combination with other simultaneous stressors (hypersalinity, Carlson et al 2018; low light availability, Moore and Jarvis 2008, Moore et al., 2014), or mesocosm experiments. Seagrasses in mesocosm experiments were exposed to at least 2 temperature treatments above average in situ summer temperature that extended the experimental thermal range beyond the Tlimit. Seagrasses were exposed to experimental temperatures for 6 to 120 days depending on the study. The Tlimit was defined as: a) the upper temperature at which shoot survival, shoot growth or biomass above optimal temperature started to decline in experimental studies; or b) the seawater temperature during the heat wave that triggered die-off events.

For each study, the compiled dataset includes the species name, location and coordinates of the population studied, the Tlimit, the approach (i.e. experimental or empirical), the year the study was conducted and the data source. For experimental studies, the dataset also includes the temperature treatments seagrasses were exposed to. For each population studied, we obtained mean annual seawater temperature values for the 5 years before the thermal tolerance experiment or observation was conducted from the ORAS4 ocean reanalysis (Balmaseda, Mogensen, Weaver, 2013), which provides monthly 3D temperature global fields from 1958 to present with a spatial resolution of 1 degree in the horizontal and ~10 m in the vertical. Those temperatures aim at representing the regional characteristics, rather than the local features which cannot be captured by the coarse spatial resolution, [Relationship between files] The file "variables_Marbà_et_al_ 2022.xlsx" defines the variables used in the dataset. The full references of the sources of data compiled in the dataset are provided in the file "References_Dataset_Marba_et_al_2022.docs"., [Environmental/experimental conditions] The dataset includes target experimental temperatures and average annual seawater temperature natural populations were exposed to, calculated for the 5 years before conducting the experiment or the occurrence of seagrass mass-mortality event., Dataset of seagrass upper thermal limits for survival, growth or biomass loss derived from empirical observations of seagrass die-off events attributed to heat waves or mesocosm experiments., This work was funded by the Spanish Ministry of Economy, Industry and Competivness with the projects MedShift (CGL2015-71809-P), SumaEco (RTI2018-095441-B-C21) and Clifish (CTM2015-66400-C3-2-R), the European Union’s Horizon 2020 SOCLIMPACT project (grant agreement No 776661) and the King Abdullah University of Science and Technology (KAUST subaward number 3834). S.B. was supported by a Juan de la Cierva Formación contract funded by the Spanish Ministry of Economy, Industry and Competitiveness., File List: - variables_Marbà_et_al_ 2022.xlsx - dataset_Marbà_et_al_2022_(seagrass thermal limits).xlsx - References_Dataset_Marba_et_al_2022.docs, Peer reviewed




Marine macrophytes as carbon sinks: Comparison between seagrasses and the non-native alga Halimeda incrassata in the western Mediterranean (Mallorca)

Digital.CSIC. Repositorio Institucional del CSIC
  • Marx, Lukas
  • Flecha, Susana
  • Wesselmann, Marlene
  • Morell, Carlos
  • Hendriks, Iris E.
Seagrass species play a critical role in the mitigation of climate change by acting as valuable carbon sinks and storage sites. Another important ecosystem service of this coastal vegetation is nutrient removal. However, coastal ecosystems are under increasing pressure of global warming and associated establishment of invasive species. To elucidate the respective contributions of seagrass species Posidonia oceanica and Cymodocea nodosa and the non-native macroalga Halimeda incrassata as primary producers and nutrient sinks in coastal habitats we conducted in-situ incubations in the North-western Mediterranean Sea. Measured metabolic activity and nutrient removal as well as calcification rates in these habitats over a 24 h period in spring and summer confirmed that the endemic seagrass P. oceanica represents a valuable ecosystem with high O2 production and considerable carbon capture. The documented regression of P. oceanica meadows with higher temperatures and decline in autotrophy as measured here causes concern for the continuity of ecosystem services rendered by this habitat throughout the Mediterranean Sea with progressing climate warming. In contrast, the enhanced performance of C. nodosa and the calcifying alga H. incrassata with increasing temperatures, under expected rates of future warming is uncertain to mitigate loss of productivity in case of a potential shift in marine vegetation. This could ultimately lead to a decline in ecosystem services, decreased carbon storage and mitigation of climate change. Furthermore, this study provides a first estimate for the growth rate of H. incrassata in the Mediterranean Sea, supporting evidence for the mechanism of its rapid extension., Funding was provided by projects PRD2018/18, from the Conselleria d’Innovació, Recerca i Turisme of Mallorca (Spain) and RTI2018-095441-B-C21 (SUMAECO) from the Spanish Ministry of Science, Innovation and Universities. SF was supported by a “Margalida Comas” postdoctoral scholarship, funded by the Balearic Islands Government., Peer reviewed




Warming threatens to propel the expansion of the exotic seagrass Halophila stipulacea

Digital.CSIC. Repositorio Institucional del CSIC
  • Wesselmann, Marlene
  • Chefaoui, Rosa M.
  • Marbà, Núria
  • Serrao, Ester Álvares
  • Duarte, Carlos M.
The spread of exotic species to new areas can be magnified when favored by future climatic conditions. Forecasting future ranges using species distribution models (SDMs) could be improved by considering physiological thresholds, because models solely based on occurrence data cannot account for plasticity due to acclimation of individuals to local conditions over their life-time or to adaptation due to selection within local populations. This is particularly relevant for the exotic seagrass Halophila stipulacea, which colonized the Mediterranean Sea a century ago and shifted its thermal niche, coping with a colder regime. Here, we used two hybrid models combining correlative SDMs with the thermal limits for growth of native and exotic H. stipulacea populations to predict the distribution of the species in its native (Indian Ocean and Red Sea) and exotic ranges (Mediterranean Sea and Caribbean Sea) under two scenarios forecasting limited (RCP 2.6) and severe (RCP 8.5) future climate changes by 2050 and 2100. Then, we assessed the differences between hybrid models based on native Red Sea thermal limits (niche conservatism: 17–36°C) and on exotic Mediterranean thermal limits (local adaptation: 14–36°C). At the Mediterranean exotic range, the local adaptation hybrid model accurately agreed with the present distribution of the species while the niche conservatism-based hybrid model failed to predict 87% of the current occurrences of the species. By contrast, both hybrid models predicted similar species distributions for the native range and exotic Caribbean range at present and projected that H. stipulacea will maintain its current worldwide under all future greenhouse gas emission scenarios. The hybrid model based on Mediterranean thermal limits projected the expansion of H. stipulacea through the western Mediterranean basin (except the gulf of Leon) under the most severe scenario (RCP 8.5) by 2100, increasing its distribution by 50% in the Mediterranean. The future expansion of H. stipulacea is related to its capacity to cope with warm waters and it may become a relevant species in the future, particularly under the projected decline of native Mediterranean seagrasses, resulting in important shifts in seagrass communities and overall ecosystem functions., This study was funded by the Spanish Ministry of Science, Innovation and Universities (SuMaEco RTI2018-095441-B-C21), King Abdullah University for Science and Technology (3834 KAUST-CSIC Research Collaboration), the Foundation for Science and Technology (UIDB/04326/2020), and the Operational Programmes CRESC Algarve 2020 and COMPETE 2020 (EMBRC.PT ALG-01-0145-FEDER-022121 and BIODATA.PT ALG-01-0145-FEDER-022231). MW was supported by a Ph.D. contract (BES-2016-078241) of the Spanish Ministry of Science, Innovation and Universities. RC obtained additional support from the European Union’s Horizon., Peer reviewed




Seagrass Thermal Limits and Vulnerability to Future Warming

Digital.CSIC. Repositorio Institucional del CSIC
  • Marbà, Núria
  • Jordá, Gabriel
  • Bennett, Scott
  • Duarte, Carlos M.
Seagrasses have experienced major losses globally mostly attributed to human impacts. Recently they are also associated with marine heat waves. The paucity of information on seagrass mortality thermal thresholds prevents the assessment of the risk of seagrass loss under marine heat waves. We conducted a synthesis of reported empirically- or experimentally-determined seagrass upper thermal limits (Tlimit) and tested the hypothesis that they increase with increasing local annual temperature. We found that Tlimit increases 0.42± 0.07°C per°C increase in in situ annual temperature (R2 = 0.52). By combining modelled seagrass Tlimit across global coastal areas with current and projected thermal regimes derived from an ocean reanalysis and global climate models (GCMs), we assessed the proximity of extant seagrass meadows to their Tlimit and the time required for Tlimit to be met under high (RCP8.5) and moderate (RCP4.5) emission scenarios of greenhouse gases. Seagrass meadows worldwide showed a modal difference of 5°C between present Tmax and seagrass Tlimit. This difference was lower than 3°C at the southern Red Sea, the Arabian Gulf, the Gulf of Mexico, revealing these are the areas most in risk of warming-derived seagrass die-off, and up to 24°C at high latitude regions. Seagrasses could meet their Tlimit regularly in summer within 50-60 years or 100 years under, respectively, RCP8.5 or RCP4.5 scenarios for the areas most at risk, to more than 200 years for the Arctic under both scenarios. This study shows that implementation of the goals under the Paris Agreement would safeguard much of global seagrass from heat-derived mass mortality and identifies regions where actions to remove local anthropogenic stresses would be particularly relevant to meet the Target 10 of the Aichi Targets of the Convention of the Biological Diversity., This work was funded by the Spanish Ministry of Economy, Industry and Competivness with the projects MedShift (CGL2015-71809-P), SumaEco (RTI2018-095441-B-C21) and Clifish (CTM2015-66400-C3-2-R), the European Union’s Horizon 2020 SOCLIMPACT project (grant agreement No 776661) and the King Abdullah University of Science and Technology (KAUST subaward number 3834). SB was supported by a Juan de la Cierva Formación contract funded by the Spanish Ministry of Economy, Industry and Competitiveness., Peer reviewed




Thermal Performance of Seaweeds and Seagrasses Across a Regional Climate Gradient

Digital.CSIC. Repositorio Institucional del CSIC
  • Bennett, Scott
  • Vaquer-Sunyer, Raquel
  • Jordá, Gabriel
  • Forteza, Marina
  • Roca, Guillem
  • Marbà, Núria
Comparative patterns in thermal performance between populations have fundamental implications for a species thermal sensitivity to warming and extreme events. Despite this, within-species variation in thermal performance is seldom measured. Here we compare thermal performance both within-species and between-species, for two species of seagrass (Posidonia oceanica and Cymodocea nodosa) and two species of seaweed (Padina pavonica and Cystoseira compressa) across the Mediterranean Sea. Experimental populations from four locations representing between 75 and 99% of each species thermal distribution and a 6°C gradient in summer temperatures, were exposed to 10 temperature treatments between 15 and 36°C. Experimental thermal performance displayed the greatest variability between species, with optimal temperatures differing by over 10°C within the same location. Within-species differences in thermal performance were also important for P. oceanica which displayed large thermal safety margins within cool and warm-edge populations and small safety margins within central populations. Our findings suggest patterns of thermal performance in Mediterranean seagrasses and seaweeds retain deep “pre-Mediterranean” evolutionary legacies, suggesting marked differences in sensitivity to warming within and between benthic marine communities., SB received funding from the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 659246 and Juan de la Cierva Formación (FJCI-2016-30728). RV-S was funded by Juan de la Cierva – Incorporación (IJCI-2015-23163), NM, SB, and RV-S received funding from the Spanish Ministry of Economy, Industry and Competitiveness (MedShift, CGL2015-71809-P). NM received funding from the Spanish Ministry of Science, Innovation and Universities (SUMAECO, RTI2018-095441-B-C21)., Peer reviewed




Wave energy flux in the Caribbean Sea: Trends and variability

Digital.CSIC. Repositorio Institucional del CSIC
  • Orejarena-Rondón, Andrés F.
  • Restrepo, Juan C.
  • Correa-Metrio, Alex
  • Orfila, Alejandro
Wave Energy Flux (WEF) in the Colombian Caribbean Sea is assessed using a 60 years wave reanalysis from 1958 to 2017. Significant wave height (Hs) and mean wave energy period (Tm_1,0) are validated against in situ buoy data from the National Oceanic and Atmospheric Administration and from the Dirección General Marítima in the Central Caribbean Sea and in front of the Colombian shelf. WEF is calculated at virtual buoys allocated in the central Caribbean, at the continental shelf and around insular territories revealing a long-term decrease in magnitude with an annual rate between 0.01 and 0.2% with different regional behavior. In addition, WEF variations at interannual scale are found to be associated with ENSO phases. Wave energy power decreased from 1989 to 2017 in all analyzed locations., This work was supported by COLCIENCIAS (Departamento Administrativo de Ciencia, Tecnología e Innovación), convocatoria 727. A. Orfila would like to thank financial support from Ministerio de Ciencia, Innovación y Universidades of Spain through the MOCCA project (grant no. RTI2018-095441-B-C21)., Peer reviewed




pH trends and seasonal cycle in the coastal Balearic Sea reconstructed through machine learning

Digital.CSIC. Repositorio Institucional del CSIC
  • Flecha, Susana
  • Giménez-Romero, Alex
  • Tintoré, Joaquín
  • Pérez, Fiz F.
  • Alou-Font, Eva
  • Matías, Manuel A.
  • Hendriks, Iris E.
11 pages, 2 tables, 4 figures.-- This article is licensed under a Creative Commons Attribution 4.0 International License,, The decreasing seawater pH trend associated with increasing atmospheric carbon dioxide levels is an issue of concern due to possible negative consequences for marine organisms, especially calcifiers. Globally, coastal areas represent important transitional land-ocean zones with complex interactions between biological, physical and chemical processes. Here, we evaluated the pH variability at two sites in the coastal area of the Balearic Sea (Western Mediterranean). High resolution pH data along with temperature, salinity, and also dissolved oxygen were obtained with autonomous sensors from 2018 to 2021 in order to determine the temporal pH variability and the principal drivers involved. By using environmental datasets of temperature, salinity and dissolved oxygen, Recurrent Neural Networks were trained to predict pH and fill data gaps. Longer environmental time series (2012–2021) were used to obtain the pH trend using reconstructed data. The best predictions show a rate of −0.0020±0.00054 pH units year−1, which is in good agreement with other observations of pH rates in coastal areas. The methodology presented here opens the possibility to obtain pH trends when only limited pH observations are available, if other variables are accessible. Potentially, this could be a way to reliably fill the unavoidable gaps present in time series data provided by sensors, Funding for this work was provided by the projects RTI2018-095441-B-C21, RTI2018-095441-B-C22 (SuMaEco) and Grant MDM-2017-0711 (María de Maeztu Excellence Unit) funded by MCIN/AEI/10.13039/501100011033 and by the “ERDF A way of making Europe”, the BBVA Foundation project Posi-COIN and the Balearic Islands Government projects AAEE111/2017 and SEPPO (2018). SF was supported by a “Margalida Comas” postdoctoral scholarship, also from the Balearic Islands Government. FFP was supported by the BOCATS2 (PID2019-104279GB-C21) project funded by MCIN/AEI/10.13039/501100011033. This work is a contribution to CSIC’s Thematic Interdisciplinary Platform PTI WATER:iOS, Peer reviewed




Coastal pH variability in the Balearic Sea

Digital.CSIC. Repositorio Institucional del CSIC
  • Hendriks, Iris E.
  • Flecha, Susana
  • Pérez, Fiz F.
  • Alou-Font, Eva
  • Tintoré, Joaquín
[Description of methods used for collection/generation of data] In both stations a SAMI-pH (Sunburst Sensors LCC) was attached, at 1 m in the Bay of Palma and at 4 m depth in Cabrera. The pH sensors were measuring pH, in the total scale (pH𝑇T), hourly since December 2018 in the Bay of Palma and since November 2019 in Cabrera. The sensor precision and accuracy are < 0.001 pH and ± 0.003 pH units, respectively. Monthly maintenance of the sensors was performed including data download and surface cleaning. Temperature and salinity for the Cabrera mooring line was obtained starting November 2019 with a CT SBE37 (Sea-Bird Scientific©). Accuracy of the CT is ± 0.002 ∘C for temperature and ± 0.003 mS cm−1−1 for conductivity. Additionally, oxygen data from a SBE 63 (Sea-Bird Scientific ©) sensor attached to the CT in Cabrera were used. Accuracy of oxygen sensors is ± 2% for the SBE 63., [Methods for processing the data] Periodically water samplings for dissolved oxygen (DO), pH in total scale at 25 ∘C (pH𝑇25) and total alkalinity (TA) were obtained during the sensor maintenance campaigns. DO and (pH𝑇25) samples were collected in order to validate the data obtained by the sensors.
DO concentrations were evaluated with the Winkler method modified by Benson and Krause by potentiometric titration with a Metrohm 808 Titrando with a accuracy of the method of ± 2.9 μmol kg−1μmol kg−1 and with an obtained standard deviation from the sensors data and the water samples collected of ± 5.9 μmol kg−1μmol kg−1.
pH𝑇25T25 data was obtained by the spectrophotometric method with a Shimadzu UV-2501 spectrophotometer containing a 25 ∘C-thermostated cells with unpurified m-cresol purple as indicator following the methodology established by Clayton and Byrne by using Certified Reference Material (CRM Batch #176 supplied by Prof. Andrew Dickson, Scripps Institution of Oceanography, La Jolla, CA, USA). The accuracy obtained from the CRM Batch was of ± 0.0051 pH units and the precision of the method of ± 0.0034 pH units. The mean difference between the SAMI-pH and discrete samples was of 0.0017 pH units., Funding for this work was provided by the projects RTI2018-095441-B-C21 (SuMaEco) and, the BBVA Foundation project Posi-COIN and the Balearic Islands Government projects AAEE111/2017 and SEPPO (2018). SF was supported by a “Margalida Comas” postdoctoral scholarship, also from the Balearic Islands Government.
FFP was supported by the BOCATS2 (PID2019-104279GB-C21) project funded by MCIN/AEI/10.13039/501100011033.This work is a contribution to CSIC’s Thematic Interdisciplinary Platform PTI WATER:iOS., Peer reviewed




Coastal pH variability reconstructed through machine learning in the Balearic Sea

Digital.CSIC. Repositorio Institucional del CSIC
  • Hendriks, Iris E.
  • Flecha, Susana
  • Giménez-Romero, Alex
  • Tintoré, Joaquín
  • Pérez, Fiz F.
  • Alou-Font, Eva
  • Matías, Manuel A.
[Description of methods used for collection/generation of data] Data was acquired in both stations using a SAMI-pH (Sunburst Sensors LCC) was attached, at 1 m in the Bay of Palma and at 4 m depth in Cabrera. The pH sensors were measuring pH, in the total scale (pH𝑇), hourly since December 2018 in the Bay of Palma and since November 2019 in Cabrera. The sensor precision and accuracy are < 0.001 pH and ± 0.003 pH units, respectively. Monthly maintenance of the sensors was performed including data download and surface cleaning. Temperature and salinity for the Cabrera mooring line was obtained starting November 2019 with a CT SBE37 (Sea-Bird Scientific©). Accuracy of the CT is ± 0.002 ∘C for temperature and ± 0.003 mS cm−1−1 for conductivity. Additionally, oxygen data from a SBE 63 (Sea-Bird Scientific ©) sensor attached to the CT in Cabrera were used. Accuracy of oxygen sensors is ± 2% for the SBE 63., [Methods for processing the data] Once data (available at https://doi.org/XXX/DigitalCSIC/XXX) was validated, several processing steps were performed to ensure an optimal training process for the neural network models. First, all the data of the time series were re-sampled by averaging the data points obtaining a daily frequency. Afterwards, a standard feature-scaling procedure (min-max normalization) was applied to every feature (temperature, salinity and oxygen) and to pHT. Finally, we built our training and validations sets as tensors with dimensions (batchsize, windowsize, 𝑁features), where batchsize is the number of examples to train per iteration, windowsize is the number of past and future points considered and 𝑁features is the number of features used to predict the target series. Temperature values below 𝑇=12.5T=12.5 °C were discarded as they are considered outliers in sensor data outside the normal range in the study area.
A BiDireccional Long Short-Term Memory (BD-LSTM) neural network was selected as the best architecture to reconstruct the pHT time series, with no signs of overfitting and achieving less than 1% error in both training and validation sets. Data corresponding to the Bay of Palma were used in the selection of the best neural network architecture. The code and data used to determine the best neural network architecture can be found in a GitHub repository mentioned in the context information., Funding for this work was provided by the projects RTI2018-095441-B-C21, RTI2018-095441-B-C22 (SuMaEco) and Grant MDM-2017-0711 (María de Maeztu Excellence Unit) funded by MCIN/AEI/10.13039/501100011033 and by the “ERDF A way of making Europe", the BBVA Foundation project Posi-COIN and the Balearic Islands Government projects AAEE111/2017 and SEPPO (2018). SF was supported by a “Margalida Comas” postdoctoral scholarship, also from the Balearic Islands Government.
FFP was supported by the BOCATS2 (PID2019-104279GB-C21) project funded by MCIN/AEI/10.13039/501100011033.This work is a contribution to CSIC’s Thematic Interdisciplinary Platform PTI WATER:iOS (https://pti-waterios.csic.es/)., Peer reviewed




Analytical solution for the Kelvin–Helmholtz instability under a submerged canopy-oscillatory flow

Digital.CSIC. Repositorio Institucional del CSIC
  • Cáceres-Euse, Alejandro
  • Orfila, Alejandro
  • Abdolahpour, Maryam
  • Toro-Botero, Francisco
  • Variano, Evan
  • Osorio, Andrés F.
Following on from a theoretical solution to the Kelvin–Helmholtz (KH) instability under submerged canopy-oscillatory flow environments a relationship between the incoming free surface wave frequency and KH frequency was developed. The KH frequencies (fKH) are higher than those from the incoming wave expressed by fKH ≈[2.83,5.02]fw. In addition, the analytical expression, along with the energy spectra analysis of the vertical turbulent flux of momentum (Su′w′) for cases when the KH dominates vertical mixing, allowed us to observe the spectral shortcut mechanism. Based on comparisons between the KH time scale and the mean horizontal transport of mass time scale, it can be concluded that the instability has no effect on the wave-induced steady current process. The instability plays an important role on vertical mixing but not on the horizontal transport of mass., A. Cáceres-Euse wants to thank COLCIENCIAS for the scholarship 647, the Universidad Nacional de Colombia - Medellín and the University of California - Berkeley. AO acknowledges financial support from Ministerio de Ciencia, Innovación y Universidad through MOCCA project (RTI2018-095441-B-C21).




eDNA Reveals the Associated Metazoan Diversity of Mediterranean Seagrass Sediments

Digital.CSIC. Repositorio Institucional del CSIC
  • Wesselmann, Marlene
  • Geraldi, Nathan R.
  • Marbà, Núria
  • Hendriks, Iris E.
  • Díaz‐Rúa, Rubén
  • Duarte, Carlos M.
Anthropogenic impacts on marine ecosystems have led to a decline of biodiversity across the oceans, threatening invaluable ecosystem services on which we depend. Ecological temporal data to track changes in diversity are relatively rare, and the few long-term datasets that exist often only date back a few decades or less. Here, we use eDNA taken from dated sediment cores to investigate changes over approximately the last 100 years of metazoan communities in native (Cymodocea nodosa and Posidonia oceanica) and exotic (Halophila stipulacea) seagrass meadows within the eastern Mediterranean Sea, at two locations in Greece and two in Cyprus. Overall, metazoan communities showed a high turnover of taxa during the past century, where losses of individual taxa in a seagrass meadow were compensated by the arrival of new taxa, probably due to the arrival of exotic species introduced in the Mediterranean Sea from the Suez Canal or the Gibraltar Strait. Specifically, bony fishes (Class Actinopteri) and soft corals (Class Anthozoa) presented significantly higher richness in the past (before the 1980s) than in the most recent time periods (from 1980–2017) and some Cnidarian orders were solely found in the past, whereas sponges and Calanoids (Class Hexanauplia), an order of copepods, showed an increase in richness since the 1980s. Moreover, the Phyla Porifera, Nematoda and the Classes Staurozoa, Hydrozoa and Ophiuroidea were detected in P. oceanica meadows but not in C. nodosa and H. stipulacea, which led to P. oceanica meadows having twice the richness of other seagrasses. The greater richness resulted from the more complex habitat provided by P. oceanica. The combination of eDNA and sediment cores allowed us to reconstruct temporal patterns of metazoan community diversity and provides a novel approach to follow natural communities back in time in the absence of time series and baseline data. The ongoing loss of P. oceanica meadows, likely to be compounded with future warming, might lead to a major loss of biodiversity and the replacement by other seagrass species, whether native or exotic, does not compensate for the loss., This research was funded by by the Spanish Ministry of Economy and Competiveness (Project MEDSHIFT, CGL2015-71809-P), the Spanish Ministry of Science, Innovation and Universities (SUMAECO, RTI2018-095441-B-C21), and King Abdullah University for Science and Technology (3834 KAUST-CSIC Research Collaboration and base line funding to C.M.D.).




A mathematical model for inter-specific interactions in seagrasses

Digital.CSIC. Repositorio Institucional del CSIC
  • Llabrés, Eva
  • Mayol, Elvira
  • Marbà, Núria
  • Sintes, Tomàs
Seagrasses are vital organisms in coastal waters, and the drastic demise of their population in the last decades has worrying implications for marine ecosystems. Spatial models for seagrass meadows provide a mathematical framework to study their dynamical processes and emergent collective behavior. These models are crucial to predict the response of seagrasses to different global warming scenarios, analyze the resilience of existing seagrass distributions, and optimize restoration strategies. In this article, we propose a model that includes interactions among different species based on the clonal growth of seagrasses. We present a theoretical analysis of the model considering the specific case of the seagrass–seaweed interaction between Cymodocea nodosa and Caulerpa prolifera. Our simulations successfully reproduce field observations of shoot densities in mixed meadows in the Ebro River Delta in the Mediterranean Sea. Besides, the proposed model allows us to investigate the possible underlying mechanisms that mediate the interaction among the two macrophytes., ELL and TS acknowledge the Research Grants: PRD2018/18-2 funded by LIET from the D. Gral. d'Innovacio i Recerca (CAIB), RTI2018-095441-B-C22 funded by MCIN/AEI/10.13039/501100011033 and by European Regional Development Fund – ‘A way of making Europe', and MDM-2017-0711 funded by MCIN/AEI/10.13039/501100011033. NM and EM also acknowledge the Spanish Ministry of Science, Innovation and Universities (SuMaEco RTI2018-095441-B-C21)., Peer reviewed




Mediterranean seagrasses as carbon sinks: methodological and regional differences

Digital.CSIC. Repositorio Institucional del CSIC
  • Hendriks, Iris E.
  • Escolano-Moltó, Anna
  • Flecha, Susana
  • Vaquer-Sunyer, Raquel
  • Wesselmann, Marlene
  • Marbà, Núria
The increasing rates of CO2 due to anthropogenic activities are causing important potential climate threats for the Mediterranean Sea: ocean acidification and warming. In this region, two seagrass species, Posidonia oceanica and Cymodocea nodosa, can play a crucial role in climate change mitigation. Seagrasses can act as carbon sinks, buffer lowering pH values during the day and storing carbon in the sediment underneath their meadows. However, available data documenting these processes are scattered and collected using different methodologies, which makes its interpretation and generalization very challenging. In this study, we analyzed published and unpublished data (collected for this study) on seagrass community metabolism to compare two methodologies, benthic chambers and multiparametric sensors, and evaluate trends through time for these two species. Furthermore, we analyzed seasonal trends of both seagrass species' metabolic rates and their variation between the eastern and western Mediterranean basins. Most evaluated meadows, 80.9 %, were autotrophic. Calculated metabolic rates differ between methodologies, with multiparametric sensors estimating rates almost an order of magnitude higher, 143.22±28.21 (SE) mmol O2 m-2 d-1 for net community production (NCP) compared to an average of 18.75±3.80 (SE) mmol O2 m-2 d-1 for measurements with benthic chambers. However, sensors are not able to differentiate between habitats and only useful to assess seagrass metabolism at a broader community level, whereas benthic chambers are capable of evaluating rates at the species level and confirm that P. oceanica is more productive compared to C. nodosa. We found similar metabolic rates in the eastern and western Mediterranean regions for P. oceanica with the benthic-chamber technique and higher NCP in the west based on sensor measurements., This work was funded by the Spanish Ministry of Economy and Competitiveness (MEDSHIFT, grant no. CGL2015-71809-P) and the Spanish Ministry of Science, Universities and Innovation (project SUMAECO, grant no. RTI2018-095441-B-C21). Susana Flecha was supported by a Margalida Comas postdoctoral scholarship, funded by the government of the Balearic Islands. We acknowledge support of the publication fee by the CSIC Open Access Publication Support Initiative through its Unit of Information Resources for Research (URICI).




Experimental Carbon Emissions From Degraded Mediterranean Seagrass (Posidonia oceanica) Meadows Under Current and Future Summer Temperatures

Digital.CSIC. Repositorio Institucional del CSIC
  • Roca, Guillem
  • Palacios, Javier
  • Ruiz-Halpern, Sergio
  • Marbà, Núria
Posidonia oceanica beds are recognized to be an essential carbon sink in the Mediterranean Sea. However, when seagrass cover disappears, seagrass sediments may become net carbon sources contributing to the CO atmospheric increase. Determining CO efflux from degraded seagrass beds is required to understand potential emissions from this Mediterranean ecosystem. This study presents one of the very first experimental CO efflux estimates from P. oceanica degraded seagrass sediments under future warming and hydrodynamic scenarios. Sediments were sampled from a P. oceanica seagrass meadow in Pollença, a sheltered bay on Mallorca Island. Sediment samples were kept in mesocosms for 98 days at five different temperatures (26, 27.5, 29, 30.5, and 32) and two treatments (agitation/repose). CO effluxes were higher in the agitated treatments (0.75 μM m s) than in repose (0.51 μM m s). CO efflux clearly increased with temperature in repose treatments, while treatments under agitation presented larger variation. Our results indicate that exposure to hydrodynamics plays a key role in the remineralization of organic carbon (C) under climate change conditions and that denuded seagrass meadows have the potential to emit in a single summer season (3 months) the amount of carbon (C) that a healthy meadow sequestrates during an entire year. This study provides brand new information required to quantify the dynamics of C stock loss and CO emissions in degraded seagrass meadows., This work was funded by the Spanish Ministry of Economy and Competitiveness (Medshift, CGL2015-71809-P) and of Science, Innovation and Universities (Sumaeco, RTI2018-095441-B-C21).




Extreme waves and climatic patterns of variability in the eastern North Atlantic and Mediterranean basins

Digital.CSIC. Repositorio Institucional del CSIC
  • Morales Márquez, Verónica
  • Orfila, Alejandro
  • Simarro, Gonzalo
  • Marcos, Marta
The spatial and temporal variability of extreme wave climate in the North Atlantic Ocean and the Mediterranean Sea is assessed using a 31-year wave model hindcast. Seasonality accounts for 50% of the extreme wave height variability in the North Atlantic Ocean and up to 70% in some areas of the Mediterranean Sea. Once seasonality is filtered out, the North Atlantic Oscillation and the Scandinavian index are the dominant large-scale atmospheric patterns that control the interannual variability of extreme waves during winters in the North Atlantic Ocean; to a lesser extent, the East Atlantic Oscillation also modulates extreme waves in the central part of the basin. In the Mediterranean Sea, the dominant modes are the East Atlantic and East Atlantic-Western Russia modes, which act strongly during their negative phases. A new methodology for analyzing the atmospheric signature associated with extreme waves is proposed. The method obtains the composites of significant wave height (SWH), mean sea level pressure (MSLP), and 10m height wind velocity (U 10) using the instant when specific climatic indices have a stronger correlation with extreme waves., This research has been supported by the Ministerio de Ciencia e Innovación (grant nos. FPI2016, CTM2015-66225-C2-2-P, RTI2018-095441-B-C21, and PRX18/00218) and the European Geosciences Union (EGU OSPP 2019 grant)., Peer reviewed




Thermal performance of seaweeds and seagrasses across a regional climate gradient [Dataset]

Digital.CSIC. Repositorio Institucional del CSIC
  • Bennett, Scott
  • Marbà, Núria
  • Vaquer-Sunyer, Raquel
  • Jordá, Gabriel
  • Forteza, Marina
  • Roca, Guillem
Growth rates of Cystoseira compressa from Crete have been removed from the dataset and analysis due to poor condition of the plants., Comparative patterns in thermal performance between populations have fundamental implications for a species thermal sensitivity to warming and extreme events. Despite this, within-species variation in thermal performance is seldom measured. Here we compare thermal performance between-species variation within communities, for two species of seagrass (Posidonia oceanica and Cymodocea nodosa) and two species of seaweed (Padina pavonica and Cystoseira compressa). Experimental populations from four locations spanning approximately 75% of each species global distribution and a 6ºC gradient in summer temperatures were exposed to 10 temperature treatments (15ºC to 36ºC), reflecting median, maximum and future temperatures. Experimental thermal performance displayed the greatest variability between species, with optimal temperatures differing by over 10ºC within the same location. Within-species differences in thermal performance were also important for P. oceanica which displayed large thermal safety margins within cool and warm-edge populations and small safety margins within central populations. Our findings suggest patterns of thermal performance in Mediterranean seagrasses and seaweeds retain deep ‘pre-Mediterranean’ evolutionary legacies, suggesting marked differences in sensitivity to warming within and between benthic marine communities., [Field collections] Thermal tolerance experiments were conducted on two seagrass species (P. oceanica and Cymodocea nodosa) and two brown seaweed species (Cystoseira compressa and P. pavonica) from four locations spanning 8 degrees in latitude and 30 degrees in longitude across the Mediterranean (Fig. 1, Table S1). These four species were chosen as they are dominant foundation species and cosmopolitan across the Mediterranean Sea. Thermal performance experiments from Catalonia and Mallorca were conducted simultaneously in June 2016 for seaweeds (P. pavonica and C. compressa) and in August 2016 for seagrasses (P. oceanica and C. nodosa). Experiments for all four species were conducted in July 2017 for Crete and in September 2017 for Cyprus., [Sea temperature measurements and reconstruction] Sea surface temperature data for each collection site were based on daily SST maps with a spatial resolution of 1/4°, obtained from the National Center for Environmental Information (NCEI, https://www.ncdc.noaa.gov/oisst (Reynolds et al. 2007). These maps have been generated through the optimal interpolation of Advanced Very High Resolution Radiometer (AVHRR) data for the period 1981-2019. Underwater temperature loggers (ONSET Hobo pro v2 Data logger) were deployed at each site and recorded hourly temperatures throughout one year. In order to obtain an extended time series of temperature at each collection site, a calibration procedure was performed comparing logger data with sea surface temperature from the nearest point on SST maps. In particular, SST data were linearly fitted to logger data for the common period. Then, the calibration coefficients were applied to the whole SST time series to obtain corrected-SST data and reconstruct daily habitat temperatures from 1981-2019., [Species description and distribution] The species used in this study are all common species throughout the Mediterranean Sea, although differ in their biological traits, evolutionary histories and thermo-geographic affinities (Fig. S1). P. oceanica is endemic to the Mediterranean Sea with the all other Posidonia species found in temperate Australia (Aires et al. 2011). The distribution of P. oceanica is restricted to the Mediterranean, spanning from Gibraltar in the west to Cyprus in the east and north into the Aegean and Adriatic seas (Telesca et al. 2015) (Fig. S1A). C. nodosa distribution extends across the Mediterranean Sea and eastern Atlantic Ocean, where it is found from south west Portugal, down the African coast to Mauritania and west to Macaronesia (Alberto et al. 2008) (Fig. S1B). Congeneric species of C. nodosa are found in tropical waters of the Red Sea and Indo-Pacific, suggesting origins in the region at least prior to the closure of the Suez Isthmus, approximately 10Mya. Like C. nodosa, Cystoseira compressa has a distribution that extends across the Mediterranean and into the eastern Atlantic, where it is found west to Macaronesia and south to northwest Africa (Fig. S1C). The genus Cystoseira has recently been reclassified to include just four species with all congeneric Cystoseira spp. having warm-temperate distributions from the Mediterranean to the eastern Atlantic (Orellana et al. 2019). The distribution of Padina pavonica is conservatively considered to resemble C. nodosa and C. compressa, spanning throughout the Mediterranean and into the eastern Atlantic. We considered the poleward distribution limit of P. pavonica to be the British Isles 50ºN (Herbert et al. 2016). P. pavonica was previously thought to have a global distribution, but molecular analysis of the genus has found no evidence to support this (Silberfeld et al. 2013). Instead it has been suggested that P. pavonica was potentially misclassified outside of the Mediterranean, due to morphological similarity with congeneric species (Silberfeld et al. 2013). Padina is a monophyletic genus with a worldwide distribution from tropical to cold temperate waters (Silberfeld et al. 2013). Most species have a regional distribution, with few confirmed examples of species spanning beyond a single marine realm (sensu Spalding et al. 2007)., [Sample collection] Sample collections were conducted at two sites, separated by approximately 1 km, within each location. Collections were conducted at the same depth (1-3 m) at each location and were spaced across the reef or meadow to try and minimise relatedness between shoots or fragments. Upon collection, fragments were placed into a mesh bag and transported back to holding tanks in cool, damp, dark conditions (following Bennett et al. 2021). Fragments were kept in aerated holding tanks in the collection sites at ambient seawater temperature and maintained under a 14:10 light-dark cycle until transport back to Mallorca, where experiments were performed. Prior to transport, P. oceanica shoots were clipped to 25 cm length (from meristem to tip), to standardise initial conditions and remove old tissue for transport. For transport back to Mallorca, fragments were packed in layers within cool-boxes. Cool-packs were wrapped in damp tea towels (rinsed in seawater) and placed between layers of samples. Samples from Catalonia, Crete and Cyprus experienced approximately 12hrs of transit time. On arrival at the destination, samples were returned to holding tanks with aerated seawater and a 14:10 light-dark cycle., [Experimental design: thermal performance experiments] All experiments were run in climate-controlled incubation facilities of the Institut Mediterrani d’Estudis Avançats (Mallorca, Spain). Following 48 hrs under ambient (collection site) conditions, samples were transferred to individual experimental aquaria, which consisted of a double layered transparent plastic bag filled with 2 L of filtered seawater (60 μm) (following Savva et al. 2018). 16 experimental bags were suspended within 80L temperature-controlled baths. In total, ten baths were used, one for each experimental temperature treatment. Bath temperatures were initially set to the acclimatization temperature (i.e. in situ temperatures) and were subsequently increased or decreased by 1 °C every 24 hours until the desired experimental temperature was achieved. Experimental temperatures were: 15, 18, 21, 24, 26, 28, 30, 32, 34 and 36°C (Table S2). For each species, four replicate aquarium bags were used for each temperature treatment with three individually marked seagrass shoots or three algal fragments placed into each bag. For P. oceanica, each marked plant was a single shoot including leaves, vertical rhizome and roots. For C. nodosa, each marked individual consisted of a 10 cm fragment of horizontal rhizome containing three vertical shoots. Individually marked seaweeds contained the holdfast, and 4-5 fronds of P. pavonica (0.98 ± 0.06 g FW; mean ± SE) or a standardised 5-8 cm fragment with meristematic tip for C. compressa (3.67 ± 0.1 g FW; mean ± SE). Experimental plants were cleaned of conspicuous epiphytes. Once the targeted temperatures were reached in all of the baths, experiments ran for 14 days for the algal species and 21 days for seagrasses to allow for measurable growth in all species at the end of the experiment. Experiments were conducted inside a temperature-controlled chamber at constant humidity and air temperature (15 °C). Bags were arranged in a 4x4 grid within each bath, enabling four species/population treatments to be run simultaneously. Bags were mixed within each bath so that one replicate bag was in each row and column of the grid, to minimise any potential within bath effects of bag position. Replicate bags were suspended with their surface kept open to allow gas exchange and were illuminated with a 14h light:10h dark photoperiod through fluorescent aquarium growth lamps. The water within the bags were mixed with aquaria pumps. The light intensity within each bag was measured via a photometric bulb sensor (LI-COR) and ranged between 180-258 μmol m-2 s-1. Light intensity was constant between experiments and did not significantly differ between experimental treatments (p > 0.05). The temperature in the baths was controlled and recorded with an IKS-AQUASTAR system, which was connected to heaters and thermometers. The seawater within the bags was renewed every 72 hrs and salinity was monitored daily with an YSI multi-parameter meter. Distilled water was added when necessary to ensure salinity levels remained within the range of 36-39 PSU, typical of the study region. Carbon and Nitrogen concentrations in the leaf tissue were measured at the end of the experiment for triplicates of the 24ºC treatment for each species and location (Fig. S2) at Unidade de Técnicas Instrumentais de Análise (University of Coruña, Spain) with an elemental analyser FlashEA112 (ThermoFinnigan)., [Growth measurements and statistical analyses] Net growth rate of seagrass shoots was measured using leaf piercing-technique (Short & Duarte 2001). At the beginning of the experiment seagrass shoots were pierced just below the ligule with a syringe needle and shoot growth rate was estimated as the elongation of leaf tissue in between the ligule and the mark position of all leaves in a shoot at the end of the experiment, divided by the experimental duration. Net growth rate of macroalgae individuals was measured as the difference in wet weight at the end of the experiment from the beginning of the experiment divided by the duration of the experiment. Moisture on macroalgae specimens was carefully removed before weighing them. Patterns of growth in response to temperature were examined for each experimental population using a gaussian function: g = ke[-0.5(TMA-μ)2/σ2], where k = amplitude, μ = mean and σ = standard deviation of the curve. Best fit values for each parameter were determined using a non-linear least squares regression using the ‘nlstools’ package (Baty et al. 2015) in R (Team 2020). 95% CI for each of the parameters were calculated using non-parametric bootstrapping of the mean centred residuals. The relationship between growth metrics and the best-fit model was determined by comparing the sum of squared deviations (SS) of the observed data from the model, to the SS of 104 randomly resampled datasets. Growth metrics were considered to display a significant relationship to the best-fit model if the observed SS was smaller than the 5th percentile of randomised SS. Upper thermal limits were defined as the optimal temperature + 2 standard deviations (95th percentile of curve) or where net growth = 0. Samples that had lost all pigment or structural integrity by the end of the experiment were considered dead and any positive growth was treated as zero., [Metabolic rates] Net production (NP), gross primary production (GPP) and respiration (R) were measured for all species from the four sites for five different experimental temperatures containing the in-situ temperature during sampling up to a 6ºC warming (see SM Table S3 for details). Individuals of the different species were moved to methacrylate cylinders containing seawater treated with UV radiation to remove bacteria and phytoplankton, in incubation tanks at the 5 selected temperatures. Cylinders were closed using gas-tight lids that prevent gas exchange with the atmosphere, containing an optical dissolved oxygen sensor (ODOS® IKS), with a measuring range from 0-200 % saturation and accuracy at 25ºC of 1% saturation, and magnetic stirrers inserted to ensure mixing along the height of the core. Triplicates were measured for each species and location, along with controls consisting in cylinders filled with the UV-treated seawater, in order to account for any residual production or respiration derived from microorganisms (changes in oxygen in controls was subtracted from treatments). Oxygen was measured continuously and recorded every 15 minutes for 24 hours. Changes in the dissolved oxygen (DO) were assumed to result from the biological metabolic processes and represent NP. During the night, changes in DO are assumed to be driven by R, as in the absence of light, no photosynthetic production can occur. R was calculated from the rate of change in oxygen at night, from half an hour after lights went off to half an hour before light went on (NP in darkness equalled R). NP was calculated from the rate of change in DO, at 15 min intervals, accumulated over each 24 h period. Assuming that daytime R equals that during the night, GPP was estimated as the sum of NP and R. To derive daily metabolic rates, we accumulated individual estimates of GPP, NP, and R resolved at 15 min intervals over each 24 h period during experiments and reported them in mmol O2 m−3 day−1. A detailed description of calculation of metabolic rates can be found at Vaquer-Sunyer et al. (Vaquer-Sunyer et al. 2015)., [Thermal distribution and thermal safety margins] We estimated the realised thermal distribution for the four experimental species by downloading occurrence records from the Global Biodiversity Information Facility (GBIF.org (11/03/2020) GBIF Occurrence Download). Occurrence records from GBIF were screened for outliers and distributions were verified from the primary literature (Alberto et al. 2008, Draisma et al. 2010, Ni-Ni-Win et al. 2010, Silberfeld et al. 2013, Telesca et al. 2015, Orellana et al. 2019) and Enrique Ballesteros (pers. comms) (Fig. S1). Mean, 1st and 99th percentiles of daily SST’s were downloaded for each occurrence site for the period between 1981-2019 using the SST products described above (Table S4). Thermal range position of species at each experimental site were standardised by their global distribution using a Range Index (RI; Sagarin & Gaines 2002). Median SST at the experimental collection sites were standardized relative to the thermal range observed across a species realized distribution, using the equation: RI = 2(SM- DM)/DB where SM = the median temperature at the experimental collection site, Dm = the thermal midpoint of the species global thermal distribution and DB = range of median temperatures (ºC) that a species experiences across its distribution. The RI scales from -1 to 1, whereby ‘-1’ represents the cool, leading edge of a species distribution, ‘0’ represents the thermal midpoint of a species distribution and ‘1’ represents the warm, trailing edge of a species distribution (Sagarin & Gaines 2002). Thermal safety margins for each population were calculated as the difference between empirically derived upper thermal limits for each population and the maximum long term habitat temperatures recorded at collection sites. Each population’s thermal safety margin was plotted against its range position to examine patterns in thermal sensitivity across a species distribution., Horizon 2020 Framework Programme, Award: 659246; Juan de la Cierva Formacion, Award: FJCI-2016-30728; Spanish Ministry of Economy, Industry and Competitiveness, Award: MedShift, CGL2015-71809-P; Spanish Ministry of Science, Innovation and Universities, Award: SUMAECO, RTI2018-095441-B-C21, Trans_Mediterranean_metabolic_rates_upload; Trans_Mediterranean_seagrass_growth_rates_upload; Trans_Mediterranean_seaweed_growth_rates_upload; TransMediterranean_seaweed_growth_rates_upload, Peer reviewed




Oxygen concentration in the water column over a Posidonia oceanica meadow in Cabrera Archipelago Marine-Terrestrial National Park between October 2019 – October 2021

Digital.CSIC. Repositorio Institucional del CSIC
  • Hendriks, Iris E.
  • Aramburu, Peru Agueda
  • Flecha, Susana
  • Morell, Carlos
[Description of methods used for collection/generation of data] For the study, environmental data were measured by sensors located in both the water column and the benthic compartment (at 4 m and 8 m, respectively). Temperature, salinity and dissolved oxygen (DO) from the water column were measured from October 2019 to October 2021 by a sensor attached to the mooring line. Data were recorded with a CT SBE37 (Conductivity, Temperature) sensor (SBE37SMP-ODO-RS232, Sea-Bird Scientific©) coupled with an SBE 63 (Sea-Bird Scientific©) dissolved oxygen (DO) sensor with accuracies of ± 0.002 °C for temperature, ± 0.002 mS cm-1 for conductivity and ± 2 % for DO. Measurements were taken with a resolution of 0.0001 ºC for temperature, 0.0001 mS cm−-1 for conductivity and 0.2 µmol kg-1 for DO. Multiparametric Hydrolab HL4 probes (OTT HydroMet) were deployed during 8 different periods covering all seasons following the procedure by Hendriks et al. (2021). Accuracy for the multiparametric probe sensors is ± 0.10 ºC for temperature and ± 0.5 % of reading + 0.001 mS cm−1 for conductivity, with resolutions of 0.01 ºC and 0.001 mS cm-−1, respectively. The DO sensor presents an accuracy of ± 0.1 mg L−1 for values lower than 8 mg L−1, and ± 0.2 mg L−1 for values higher than 8 mg L−1, and a resolution of 0.01 mg L−1. Two benthic chambers were installed during May and July 2021 using a design previously described in Barrón et al. (2006). MiniDOT sensors (PME, Inc. ©) were used for temperature and DO measurements every 15 minutes, with accuracies of ± 0.1 ºC and ± 5 %, respectively. DO sensor data were validated against water samples analysed with the Winkler method.. Three chamber replicates were installed during each deployment. Wind speed (m s−1) values at Cabrera NP Station were obtained from data provided by the Organismo Autónomo de Parques Nacionales (OAPN, Spain).
For the benthic chambers, night respiration was estimated from changes in DO between one hour after sunset and one hour before sunrise. The same procedure was followed for the calculation of the net community production (NCP) during daylight hours, and the two values were summed for GPP.
NCP was used along with the total meadow area coverage and residence time of water in Sta. María Bay to determine the total O2 exported by the meadow to the water column. For the metabolic rate calculation, only oxygen data from the first 24 hours were used., [Methods for processing the data] Seasonal variations in the metabolic rates were analysed with a one-way ANOVA test using the Statistics and Machine Learning ToolboxTM in Matlab® (https://mathworks.com). For this purpose, daily metabolic rates from water column sensors and multiparametric sensors were grouped by season . The same statistical analysis was performed to analyse disparities between sensors. Since benthic chamber data were only available for one day in May and one day in July, differences between deployments were tested using a Student t-test., readme provides background information for csv datafiles. Csv datafiles are processed data of oxygen concentrations used as input for the model, with a frequency of 10 minutes for hydrolab (HL) measurements and hourly for the CT measurements, and a frequency of 15 minutes for MiniDot measurements., The endemic angiosperm Posidonia oceanica plays a remarkable role as marine habitat and ecosystem service provider in shallow waters in the Mediterranean Basin through their vertical growth, oxygenation of the water column and as a carbon sink storing allochthonous carbon and biomass underneath the meadows. Here we assess the capacity of a pristine meadow at 8m depth in the PMNT Cabrera (Mallorca, Spain) to oxygenate the water column in the coastal area through monitoring of oxygen concentrations and subsequent evaluation of the metabolic rates from these profiles in the benthic as well as pelagic compartment. Here we report dissolved oxygen (DO) measurements from a CT at 4m dept with continuous (hourly) measurements from October 2019 to October 2021 as well as DO measurements from multiparameteric sensors in the meadow (8m depth) during some weeks in the same period and 2 evalautions of DO with closed incubations., Spanish Ministry of Science (SumaEco, RTI2018–095441-B-C21), the Government of the Balearic Islands through la Consellería d'Innovació, Recerca i Turisme (Projecte de recerca científica i tecnològica SEPPO, PRD2018/18), the Posi-COIN Project from the 2018 BBVA Foundation “Ayudas a equipos de investigación científica” call. STARTER research project funded by the 2021 call of the Càtedra de la Mar, Iberostar Foundation. This work is a contribution to CSIC's Thematic Interdisciplinary Platform PTI OCEANS+. The present research was carried out within the framework of the activities of the Spanish Government through the "Maria de Maeztu Centre of Excellence" accreditation to IMEDEA (CSIC-UIB) (CEX2021-001198)., With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001198)., Peer reviewed




Methane emissions in the coastal Balearic Sea between October 2019 – October 2021

Digital.CSIC. Repositorio Institucional del CSIC
  • Hendriks, Iris E.
  • Flecha, Susana
  • Paz, M. de la
  • Pérez, Fiz F.
  • Morell Lujan-Williams, Alejandro
  • Tintoré, Joaquín
  • Marbà, Núria
[Description of methods used for collection/generation of data] Periodically water sampling for dissolved oxygen (DO) and total alkalinity (TA) was done during the sensor maintenance campaigns of BOATS.
In two sites, monthly samples were collected from the same depth as the sensors of the BOATS stations, at 1m at the oceanographic buoy, and 4m in PN Cabrera. Samples were taken for dissolved methane (CH4), dissolved oxygen (DO), total alkalinity (TA), dissolved organic carbon (DOC), Chlorophyll a (Chl a), In both stations monthly discrete samples were collected, at 1 m in the Bay of Palma, Surface for Cap ses Salines and at 4 m depth in Cabrera. Samples were collected by submerging a hose connected to a pump at the sensor height of the BOATS stations in Cabrera and the Bay of Palma. At the third site, the lighthouse of Cap ses Salines, a bucket was used to obtain surface water samples., readme provides background information for xlsx datafiles., Methane (CH4) gas is the most important greenhouse gas (GHG) after carbon dioxide, with open ocean areas acting as discreet CH4 sources and coastal regions as intense but variable CH4 sources to the atmosphere. In this database we report measured CH4 concentrations and calculated air-sea fluxes in three sites of the coastal area of the Balearic Islands Archipelago (Western Mediterranean Basin). CH4 levels and related biogeochemical variables were measured in three coastal sampling sites between 2019 and 2021. CH4 concentrations in seawater ranged from 2.7 to 10.9 nM, without significant differences between the sampling sites. Averaged estimated CH4 fluxes during the sampling period for the three stations oscillated between 0.2 and 9.7 μmol m−2 d−1 following a seasonal pattern and in general all sites behaved as weak
CH4 sources throughout the sampling period., Funding for this work was provided by the projects RTI2018-095441-B-C21 (SuMaEco) and, the BBVA Foundation project Posi-COIN and the Balearic Islands Government project SEPPO (PRD2018/18).
This work is a contribution to CSIC’s Thematic Interdisciplinary Platform PTI OCEANS+., Peer reviewed




Self-organized sulfide-driven traveling pulses shape seagrass meadows

Digital.CSIC. Repositorio Institucional del CSIC
  • Ruiz-Reynés, Daniel
  • Mayol, Elvira
  • Sintes, Tomàs
  • Hendriks, Iris E.
  • Hernández-García, Emilio
  • Duarte, Carlos M.
  • Marbà, Núria
  • Gomila, Damià
Seagrasses provide multiple ecosystem services and act as intense carbon sinks in coastal regions around the globe but are threatened by multiple anthropogenic pressures, leading to enhanced seagrass mortality that reflects in the spatial self-organization of the meadows. Spontaneous spatial vegetation patterns appear in such different ecosystems as drylands, peatlands, salt marshes, or seagrass meadows, and the mechanisms behind this phenomenon are still an open question in many cases. Here, we report on the formation of vegetation traveling pulses creating complex spatiotemporal patterns and rings in Mediterranean seagrass meadows. We show that these structures emerge due to an excitable behavior resulting from the coupled dynamics of vegetation and porewater hydrogen sulfide, toxic to seagrass, in the sediment. The resulting spatiotemporal patterns resemble those formed in other physical, chemical, and biological excitable media, but on a much larger scale. Based on theory, we derive a model that reproduces the observed seascapes and predicts the annihilation of these circular structures as they collide, a distinctive feature of excitable pulses. We show also that the patterns in field images and the empirically resolved radial profiles of vegetation density and sediment sulfide concentration across the structures are consistent with predictions from the theoretical model, which shows these structures to have diagnostic value, acting as a harbinger of the terminal state of the seagrass meadows prior to their collapse., D.G., T.S., and E.H.-G. acknowledge financial support through grants MDM-2017-0711, RTI2018-095441-B-C22, and PID2021-123723OB-C22 and E.M., I.E.H., and N.M. through grants RTI2018-095441-B-C21 and PID2021-123723OB-C21 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe. T.S. and D.G. acknowledge grant PRD2018/18-2 funded by LIET from the D. Gral. d’Innovació i Recerca (CAIB). D.R.-R. is supported by the Ministry of Universities through the “Pla de Recuperació, Transformació i Resilència” and by the EU (NextGenerationEU), together with the Universitat de les Illes Balears. E.M. was supported by a PhD contract (PRE2019-089301) of the Spanish Ministry of Science and Innovation. C.M.D. was supported by King Abdullah University of Science and Technology (KAUST) through the baseline funding., Peer reviewed




Increasing spread rates of tropical non-native macrophytes in the Mediterranean Sea

Digital.CSIC. Repositorio Institucional del CSIC
  • Wesselmann, Marlene
  • Hendriks, Iris E.
  • Johnson, Mark
  • Jordá, Gabriel
  • Mineur, Frederic
  • Marbà, Núria
Warming as well as species introductions have increased over the past centuries, however a link between cause and effect of these two phenomena is still unclear. Here we use distribution records (1813-2023) to reconstruct the invasion histories of marine non-native macrophytes, macroalgae and seagrasses, in the Mediterranean Sea. We defined expansion as the maximum linear rate of spread (km year-1) and the accumulation of occupied grid cells (50 km2) over time and analyzed the relation between expansion rates and the species' thermal conditions at its native distribution range. Our database revealed a marked increase in the introductions and spread rates of non-native macrophytes in the Mediterranean Sea since the 1960s, notably intensifying after the 1990s. During the beginning of this century species velocity of invasion has increased to 26 ± 9 km2 year-1, with an acceleration in the velocity of invasion of tropical/subtropical species, exceeding those of temperate and cosmopolitan macrophytes. The highest spread rates since then were observed in macrophytes coming from native regions with minimum SSTs two to three degrees warmer than in the Mediterranean Sea. In addition, most non-native macrophytes in the Mediterranean (>80%) do not exceed the maximum temperature of their range of origin, whereas approximately half of the species are exposed to lower minimum SST in the Mediterranean than in their native range. This indicates that tropical/subtropical macrophytes might be able to expand as they are not limited by the colder Mediterranean SST due to the plasticity of their lower thermal limit. These results suggest that future warming will increase the thermal habitat available for thermophilic species in the Mediterranean Sea and continue to favor their expansion., This study was funded by the Spanish Ministry of Science, Innovation and Universities (SuMaEco RTI2018-095441-B-C21). MW was supported by a PhD contract (BES-2016-078241) of the Spanish Ministry of Science, Innovation and Universities. We thank Rita Font for her help in compiling data from citizens science projects. The present research was carried out within the framework of the activities of the Spanish Government through the “Maria de Maeztu Centre of Excellence” accreditation to IMEDEA (CSIC-UIB) (CEX2021-001198)., With funding from the Spanish government through the "Severo Ochoa Centre of Excellence" accreditation (CEX2021-001198)., Peer reviewed