PRODUCCION DE BIOCOMBUSTIBLES A PARTIR DE ACEITES Y GRASAS RESIDUALES MEDIANTE PROCESOS CATALITICOS AVANZADOS (WOFTOFUEL)

PID2020-115053RB-I00

Nombre agencia financiadora Agencia Estatal de Investigación
Acrónimo agencia financiadora AEI
Programa Programa Estatal de I+D+i Orientada a los Retos de la Sociedad
Subprograma Programa Estatal de I+D+i Orientada a los Retos de la Sociedad
Convocatoria Proyectos I+D
Año convocatoria 2020
Unidad de gestión Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020
Centro beneficiario AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS (CSIC)
Identificador persistente http://dx.doi.org/10.13039/501100011033

Publicaciones

Found(s) 26 result(s)
Found(s) 1 page(s)

Producción de biocombustibles líquidos y compuestos aromáticos a partir de bioaceites: optimización del proceso

Digital.CSIC. Repositorio Institucional del CSIC
  • Gracia Soguero, Jesús
  • Ochoa, Elba
  • Torres Gamarra, Daniel
  • Remón, Javier
  • Pinilla Ibarz, José Luis
  • Suelves Laiglesia, Isabel
Póster presentado en la 9ª Jornada de Jóvenes Investigadores de Química y Física de Aragón, celebrada el 16 de diciembre de 2021 en Zaragoza., El uso de biomasa lignocelulósica para la síntesis de biomateriales y la generación de biocombustibles,
presenta una serie de retos derivados principalmente de la complejidad de su estructura y de su notoria
resistencia a las transformaciones químicas. El alto contenido en oxígeno de los bio-aceites imposibilita
su uso como combustible por lo que hay que someterlos a una hidrodesoxigenación catalítica (HDO). Los
catalizadores basados en Mo2C soportados sobre nanofibras de carbono (Mo2C/CNF) son capaces de
solventar los problemas asociados a los catalizadores típicamente usados en esta reacción (alto coste,
desactivación, contaminación de los productos con compuestos de azufre). En este trabajo se demuestra
que es posible lograr una producción sostenible de biocombustibles y productos químicos a partir de
bioaceites obtenidos mediante pirólisis de biomasa lignocelulósica utilizando catalizadores de Mo2C
soportados en CNF., Este trabajo se ha realizado en el marco del proyecto ENE 2017-83854-R (Ministerio de Economía y Competitividad/FEDER) y del proyecto de I+D+i PID2020-115053RB-I00, financiado por MCIN/ AEI/10.13039/501100011033. JG y JR agradecen la concesión de las ayudas FPI (PRE2018-085182) y JdC (FJCI-2016-30847) , respectivamente.




Mejoramiento de bioaceites obtenidos del procesamiento hidrotermal solar de biomasa

Digital.CSIC. Repositorio Institucional del CSIC
  • Ayala Cortés, Alejandro
  • Torres Gamarra, Daniel
  • Arcelus-Arrillaga, Pedro
  • Okoye, Patrick U.
  • Arancibia, Camilo A.
  • Pinilla Ibarz, José Luis
  • Suelves Laiglesia, Isabel
  • Villafán, Heidi Isabel
Póster presentado en la 9ª Jornada de Jóvenes Investigadores de Química y Física de Aragón, celebrada el 16 de diciembre de 2021 en Zaragoza., El procesamiento hidrotermal es una tecnología
prometedora por llevarse a cabo a temperaturas más
bajas que la pirólisis o la gasificación y presentar la
capacidad de procesar biomasa con un alto
contenido de humedad (hasta 70%), lo que ahorra el
proceso de secado. Sin embargo, el procesamiento
hidrotermal emplea generalmente energía generada
por combustibles fósiles para la generación de calor.
Dicho impacto medioambiental podría evitarse
mediante el uso de energía solar concentrada como
fuente de calor.
El procesamiento hidrotermal solar a 250°C permite producir aceites con mayor poder calorífico que los obtenidos mediante pirólisis a 450°C.
El mejoramiento del bioaceite por hidrodesoxigenación catalítica utilizando carburo de molibdeno soportado en nanofibras de carbono permite incrementar su poder calorífico hasta un 34%., Este trabajo se ha realizado en el marco del proyecto de I+D+i PID2020-115053RB-I00, financiado por MCIN/ AEI/10.13039/501100011033., Peer reviewed




A novel ‘sea-thermal’, synergistic co-valorisation approach for biofuels production from unavoidable food waste (almond hulls) and plastic residues (disposable face masks)

Digital.CSIC. Repositorio Institucional del CSIC
  • Remón, Javier
  • Oriol, Luis
  • Pinilla Ibarz, José Luis
  • Suelves Laiglesia, Isabel
6 figures, 5 tables., This work first-time addresses the synergetic hydrothermal co-valorisation of almond hulls (an unavoidable food waste) and FFP2 face masks (a common plastic material) using seawater (a sustainable reaction medium). The effects of the feedstock composition (each material alone and all possible binary combinations) and the reaction medium (deionised water, seawater and all possible binary mixtures) have been evaluated at 350 °C and 170 bar over a wide range of reaction times (20–180 min). Bilateral biomass-plastic synergistic and antagonistic interactions between both feedstocks, combined with several promoting and inhibiting effects displayed by seawater, ruled the distribution of the reaction products and their most important physicochemical and fuel properties. Process optimisation revealed that the formation of an energy-dense (32 MJ/kg) liquid biofuel was maximised (26% biocrude yield) by conducting the process with almond hulls in deionised water for 115 min. At the same time, face masks promoted solid biofuel formation (83% hydrochar yield, 46 MJ/kg) by coprocessing an almond hulls/disposable face masks mixture (8:92 wt%) in salted (seawater/deionised water mixture with 37471 ppm salinity) water for 180 min. Conducting the process with seawater (44608 ppm salinity) for 180 min allowed coprocessing of both materials (22/78 wt% almond hulls/face masks) efficiently to maximise biofuels production (13% biocrude yield, HHV = 33 MJ/kg and 67% hydrochar yield, HHV = 49 MJ/kg). These results are a breakthrough in developing season-free and flexible biorefineries, which contribute to reducing pollution and bringing out the hidden value of human activity common residues., This work was funded by FEDER and the Spanish Ministry of Science, Innovation and Universities (ENE 2017-83854-R) and MCIN/AEI/10.13039/501100011033 (I+D+i project PID2020-115053RB-I00). Javier Remón is grateful to the Spanish Ministry of Science, Innovation and Universities for the Juan de la Cierva (JdC) fellowship (IJC2018-037110-I) awarded., Peer reviewed




Toward developing more sustainable marine biorefineries: A novel ‘sea-thermal’ process for biofuels production from microalgae

Digital.CSIC. Repositorio Institucional del CSIC
  • Zhou, Yingdong
  • Remón, Javier
  • Gracia, Jesús
  • Jiang, Zhicheng
  • Pinilla Ibarz, José Luis
  • Hu, Changwei
  • Suelves Laiglesia, Isabel
5 figures, 4 tables.-- Supplementary information available., This work explores the ‘sea-thermal’ treatment of the aquatic protein-rich microalga Chlorella Vulgaris to produce energy-dense biofuels and value-added, nitrogen-rich liquid products. The impact of the processing conditions (temperature, 200–300 °C; time, 20–180 min) and reaction medium (seawater/(deionized water + seawater) ratio, 0–100 wt%) on the yields and properties of these products has been addressed using a two-level, three-factor (23) Box-Wilson Central Composite, Face Centered (CCF, α: ±1) design. These processing parameters ruled the distribution of the overall reaction products, including gas (1–5 %), biocrude (17–57 %), aqueous product (32–47 %) and hydrochar (3–45 %), and the fuel and chemical properties of these fractions. The calorific values of the hydrochar and biocrude ranged from 2 to 25 MJ/kg and 23 to 32 MJ/kg, respectively. Using low temperatures and/or short reaction times favored biocrude formation, while higher temperatures and/or more prolonged processing times boosted the repolymerization of the biocrude to hydrochar. These transformations depended on the reaction medium, with seawater exerting different influences based on the reaction medium salinity. Diluted seawater promoted the dissolution and depolymerization of polysaccharides and proteins in the alga by disrupting the H-bonding networks within these macromolecules, while enriched seawater media favored the deoxygenation and repolymerization of the biocrude. These variations highlighted the bespoke nature of this ‘sea-thermal’ process to furnish liquid and solid biofuels and/or biochemicals. Process optimization based on the formulae developed from the ANOVA of the experimental data showed that 55–60 wt% of the alga could be converted either to energy-dense (30 MJ/kg) biofuels (36 wt% biocrude, with hydrocarbons and fatty acids/esters in high amount, and 20 wt% hydrochar) at 200 °C for 180 min using enriched seawater (64 wt% seawater) as a solvent or to value-added liquids (a nitrogen-rich (88 %) biocrude, including abundant fatty amides and N-heterocycles) at 237 °C for 169 min in seawater. These results lay the first stone toward developing more sustainable marine biorefineries using marine-based solvents to valorize marine feedstocks., This work is financially supported by the National Natural Science Foundation of China (No. 21536007), the 111 project (B17030), and the I + D + i project PID2020-115053RB-I00, funded by Spanish MCIN/AEI/10.13039/501100011033. Yingdong Zhou acknowledges the support from China Scholarship Council (CSC No. 202006240156). Javier Remón and Jesús Gracia are grateful to the Spanish Ministry of Science, Innovation and Universities for their JdC (IJC2018-037110-I) and FPI (PRE2018-085182) fellowships., Peer reviewed




Design of highly active Ni catalysts supported on carbon nanofibers for the hydrolytic hydrogenation of cellobiose

Digital.CSIC. Repositorio Institucional del CSIC
  • Frecha, Esther
  • Remón, Javier
  • Torres Gamarra, Daniel
  • Suelves Laiglesia, Isabel
  • Pinilla Ibarz, José Luis
1 scheme, 7 figures, 2 tables., The direct transformation of cellulose into sugar alcohols (one-pot conversion) over supported nickel catalysts represents an attractive chemical route for biomass valorization, allowing the use of subcritical water in the hydrolysis step. The effectiveness of this process is substantially conditioned by the hydrogenation ability of the catalyst, determined by design parameters such as the active phase loading and particle size. Herein, mechanistic insights into catalyst design to produce superior activity were outlined using the hydrolytic hydrogenation of cellobiose as a model reaction. Variations in the impregnation technique (precipitation in basic media, incipient wetness impregnation, and the use of colloidal-deposition approaches) endowed carbon-nanofiber-supported catalysts within a wide range of Ni crystal sizes (5.8–20.4 nm) and loadings (5–14 wt%). The link between the properties of these catalysts and their reactivity has been established using characterization techniques such as X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma-optical emission spectroscopy (ICP-OES). A fair compromise was found between the Ni surface area (3.89 m2/g) and its resistance against oxidation for intermediate crystallite sizes (∼11.3 nm) loaded at 10.7 wt%, affording the hydrogenation of 81.2% cellobiose to sorbitol after 3 h reaction at 190°C and 4.0 MPa H2 (measured at room temperature). The facile oxidation of smaller Ni particle sizes impeded the use of highly dispersed catalysts to reduce the metal content requirements., The authors are grateful for the financial support from the Spanish Ministry of Economy and Competitiveness (MINECO, Project ENE2017-83854-R) and the I + D + © project PID 2020-115053RB-I00, funded by MCIN/AEI/10.13039/501100011033. JR is grateful to the Spanish Ministry of Science, Innovation and Universities for the Juan de la Cierva Incorporación (JdC-I) fellowship (Grant Number: IJC 2018-037110-I) awarded., Peer reviewed




Catalytic hydrolysis of cellulose to glucose: On the influence of graphene oxide morphology under microwave radiation

Digital.CSIC. Repositorio Institucional del CSIC
  • Frecha, Esther
  • Torres Gamarra, Daniel
  • Remón, Javier
  • Gammons, Richard
  • Matharu, Avtar S.
  • Suelves Laiglesia, Isabel
  • Pinilla Ibarz, José Luis
11 figures, 3 tables.-- Supplementary information available., Carbon nanostructures provide a unique platform for the synthesis of novel catalysts for biomass conversion. In this work, a set of graphene oxide (GO)-based materials (nanofibers (GONF), sheets of few-layers (FLGO), and quantum dots (GOQD)), differing structurally in morphology and size, was prepared from fishbone-carbon nanofibers (CNF) and their catalytic behavior was compared on the hydrolysis of amorphous cellulose under microwave (MW) radiation. First, the influence of the reaction temperature (135–180 ºC), holding time (0–120 min), catalyst morphology and cellulose/water ratio (0.25–2.0 wt%) was thoroughly screened and compared with conventional heating mode. The use of GO morphologies in concert with MW energy showed the potential to achieve similar kinetic profiles than previously reported sulfonated carbons (110 kJ/mol) but using considerably less amount of catalyst (cellulose-to-catalyst ratio 12-fold lower). Overall, the reactivity of the GO-catalyst was related to their degree of oxidation/exfoliation, decreasing as follows: GOQD > FLGO > GONF. Compared with conventional heating, MW-technology enabled higher loadings of cellulose (2.0 vs. 0.25 wt%) to be processed in a shorter time (20 min instead of 24 h), which is a landmark achievement toward process intensification., The authors are grateful for the financial support from the Spanish Ministry of Economy and Competitiveness (MINECO, Project ENE2017–83854-R) and the I+D+i project PID2020–115053RB-I00, funded by MCIN/ AEI/10.13039/501100011033. E.F. also thanks Ibercaja bank entity for a grant-in-aid for foreign research stays (CB 7/19). J.R. is grateful to the Spanish Ministry of Science, Innovation and Universities for the Juan de la Cierva Incorporación (JdC-I) fellowship (Grant Number: IJC2018–037110-I) awarded. DT is grateful for the Juan de la Cierva Incorporación (JdC-I) fellowship (Grant Number: IJC2020–045553-I) funded by MCIN/AEI/ 10.13039/501100011033 and by “European Union NextGenerationEU/PRTR”., Peer reviewed




Optimisation of the processing conditions of hydrolytic hydrogenation of cellulose using carbon nanofiber supported Ni catalysts

Digital.CSIC. Repositorio Institucional del CSIC
  • Frecha, Esther
  • Remón, Javier
  • Torres Gamarra, Daniel
  • Suelves Laiglesia, Isabel
  • Pinilla Ibarz, José Luis
14 figures, 6 tables., The synthesis of sorbitol from cellulose over Ni catalysts is a promising valorisation route in the biorefinery scenario, applying relatively simple preparation methods and earth-abundant metals. The overall selectivity, however, depends on the kinetic control of a complex reaction network, involving the hydrolysis of cellulose to monosaccharides via cello-oligomers, glucose hydrogenation into sorbitol and hydrogenolysis side-reactions of sugars and sorbitol to low molecular weight polyols. Therein, subtle changes in the catalyst composition and process conditions might have a strong impact on the final product distribution. Driven by these challenges, this work first-time provides novel insights into the hydrothermal hydrogenation of cellulose over a carbon nanofibre supported Ni catalyst (Ni/CNF). Firstly, the impact of the duration of a ball-milling pre-treatment step and the influences of the hydrothermal time and temperature were thoroughly analysed. The experimental results obtained highlighted the importance of process control to promote the first transformation of cellulose to glucose and its subsequent hydrogenation to sorbitol to minimise the extension of side reactions. Finally, an additional study was conducted to palliate the recalcitrant nature of cellulose by decreasing mass transfer limitations to a minimum extent. This was achieved by including an additional mix-milling of the amorphous cellulose produced in the first pre-treatment with the catalyst and increasing the H2 pressure of the hydrothermal hydrogenation process. This allowed attaining a sorbitol yield as high as 62% at 190 ºC using an initial H2 pressure of 8 MPa for 26 h, which is one of the best results reported in the literature., The authors are grateful for the financial support from the Spanish Ministry of Economy and Competitiveness (MINECO, Project ENE2017-83854-R) and the I+D+i project PID2020-115053RB-I00, funded by MCIN/ AEI/10.13039/501100011033. J.R. and D.T. are grateful to the Spanish Ministry of Science, Innovation and Universities for the Juan de la Cierva Incorporación (JdC-I) fellowships (Grant Numbers: IJC2018-037110-I and IJC2020-045553-I, respectively) awarded., Peer reviewed




Catalytic valorisation of the effluents generated during the defibrillation process of cellulose from almond hulls: A holistic zero-waste biorefinery approach

Digital.CSIC. Repositorio Institucional del CSIC
  • Frecha, Esther
  • Remón, Javier
  • Sulaeman, Allyn P.
  • Matharu, Avtar S.
  • Suelves Laiglesia, Isabel
  • Pinilla Ibarz, José Luis
5 figures, 7 tables.-- Supplementary information available., The acid-free hydrothermal microwave–assisted selective scissoring (Hymass concept) of cellulosic substrates is gaining keen interest in the field of materials science. Besides, implementing catalytic methodologies to upgrade side streams produced during this process could contribute to better, holistic utilisation of the starting feedstock. This work depicts a zero-waste biorefinery concept based on cellulose defibrillation from almond hulls using various hydrotreatment technologies (hydrogenation and hydrodeoxygenation) for downstream processing on a ruthenium catalyst. Therein, the hemicellulose separated from the biomass preconditioning step was converted into sugar alcohols and/or marketable polyols with a relatively high yield (47.4%) by hydrolytic hydrogenation (437 K, 3h, 5.0 MPa H2). Meanwhile, a family of bioactive compounds (3-hydroxypyridines) could be directly extracted from the hydrolysate stream derived from microwave digestion, along with an energy carrier that was chemically stabilised (503 K, 60 min, 4.0 MPa H2) to obtain fuel additives (diethyl succinic acid, DES) and/or fuel intermediates., The authors are grateful for the financial support from the Spanish Ministry of Economy and Competitiveness (MINECO, Project ENE2017-83854-R) and the I+D+i project PID2020-115053RB-I00, funded by MCIN/AEI/10.13039/501100011033. J.R. is grateful to the Spanish Ministry of Science, Innovation and Universities for the Juan de la Cierva Incorporación (JdC-I) fellowship (Grant Number: IJC2018-037110-I) awarded., Peer reviewed




Appendix A. Supplementary material for Toward developing more sustainable marine biorefineries: A novel ‘sea-thermal’ process for biofuels production from microalgae [Dataset]

Digital.CSIC. Repositorio Institucional del CSIC
  • Zhou, Yingdong
  • Remón, Javier
  • Gracia, Jesús
  • Jiang, Zhicheng
  • Pinilla Ibarz, José Luis
  • Hu, Changwei
  • Suelves Laiglesia, Isabel
The collection point of seawater was in the Matxitxako cape, at the Urdaibai biosphere reserve, in the Cantabrian sea (Basque Country, Spain).-- Under a Creative Commons license CC-BY-NC-ND 4.0., Table S1 The properties and composition of deionized water and seawater. Table S2 Relative influence of operating conditions and interactions on the experimental results according to the ANOVA and cause-effect Pareto analyses. Table S3 Detailed GC-MS peak area for biocrude (area%). Table S4 Summary of C. vulgaris HTT for biocrude and hydrochar production., This work is financially supported by the National Natural Science Foundation of China (No. 21536007), the 111 project (B17030), and the I + D + i project PID2020-115053RB-I00, funded by Spanish MCIN/AEI/10.13039/501100011033. Yingdong Zhou acknowledges the support from China Scholarship Council (CSC No. 202006240156). Javier Remón and Jesús Gracia are grateful to the Spanish Ministry of Science, Innovation and Universities for their JdC (IJC2018-037110-I) and FPI (PRE2018-085182) fellowships., Peer reviewed




Upgrading of biomass-derived solar hydrothermal bio-oils through catalytic hydrodeoxygenation in supercritical ethanol

Digital.CSIC. Repositorio Institucional del CSIC
  • Ayala Cortés, Alejandro
  • Torres Gamarra, Daniel
  • Frecha, Esther
  • Arcelus Arrillaga, Pedro
  • Villafán, Heidi Isabel
  • Longoria, Adriana
  • Pinilla Ibarz, José Luis
  • Suelves Laiglesia, Isabel
5 figures, 3 tables., The use of concentrated solar energy as the heat source to perform hydrothermal liquefaction (HTL) of biomass is a promising alternative to improve the thermal efficiency of the process and reduce the environmental impact of the use of fossil fuels. However, the HTL of lignocellulosic biomass produces a bio-oil that still requires an upgrading treatment to improve its properties as fuel. In the present work, bio-oils obtained from solar hydrothermal liquefaction of Agave and corncob were upgraded for the first time by hydrodeoxygenation (HDO) in supercritical ethanol using a Mo2C catalyst supported in carbon nanofibers. The main results showed yields up to 69% of the upgraded bio-oil and a deoxygenation grade of 71%, with HHV values around 35 MJ/kg for most of the upgraded bio-oils. Moreover, it was observed that HDO treatment of the solar bio-oils can produce upgraded bio-oils with chemical properties and yields similar to those produced by conventional thermochemical methods, which opens the door to extend the use of concentrated solar technologies for the whole process: from biomass thermochemical conversion to its upgrading into drop-in fuels., This study was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17. I1) within the Green Hydrogen and Energy Program- CSIC, as part of the CSIC Interdisciplinary Thematic Platform (PTI+) Transición Energética Sostenible+(PTI-TRANSENER+), and the financial support of the I+D+i project PID2020–115053RB-I00, funded by MCIN/ AEI/10.13039/501100011033. Authors also acknowledge the financial support of DGAPA-PAPIIT UNAM through grant IN107923 “Licuefacción hidrotérmica de biomasa residual” and Fondo Sectorial CONACYT-SENER-Sustentabilidad Energética through Grant 207450 and Centro Mexicano de Innovación en Energía Solar (CeMIE-Sol), within strategic project No. 120. DT is grateful for the Juan de la Cierva Incorporación (JdC-I) fellowship (Grant Number: IJC2020–045553-I) funded by MCIN/AEI/ 10.13039/501100011033 and by “European Union NextGenerationEU/PRTR”., Peer reviewed




Supplementary material for Upgrading of biomass-derived solar hydrothermal bio-oils through catalytic hydrodeoxygenation in supercritical ethanol [Dataset]

Digital.CSIC. Repositorio Institucional del CSIC
  • Ayala Cortés, Alejandro
  • Torres Gamarra, Daniel
  • Frecha, Esther
  • Arcelus Arrillaga, Pedro
  • Villafán, Heidi Isabel
  • Longoria, Adriana
  • Pinilla Ibarz, José Luis
  • Suelves Laiglesia, Isabel
Under a Creative Commons license by-nc-nd 4.0., Table S1. Gas composition of ethanol at 250 and 400 ºC. Figure S2. TGA of a) corncob and b) Agave angustifolia bagasse in N2 atmosphere. Table S2. Carbon balances of the different products after HDO.Figure S2. Van Krevelen diagram comparing HDO of C-250 bio-oil with and without Mo2C/CNF based-catalyst at 350 ºC. Figure S3. Van Krevelen diagram zoom of the general influence of temperature of HDO in a Mo2C/CNF based-catalyst., This study was supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17. I1) within the Green Hydrogen and Energy Program- CSIC, as part of the CSIC Interdisciplinary Thematic Platform (PTI+) Transición Energética Sostenible+(PTI-TRANSENER+), and the financial support of the I+D+i project PID2020–115053RB-I00, funded by MCIN/ AEI/10.13039/501100011033. Authors also acknowledge the financial support of DGAPA-PAPIIT UNAM through grant IN107923 “Licuefacción hidrotérmica de biomasa residual” and Fondo Sectorial CONACYT-SENER-Sustentabilidad Energética through Grant 207450 and Centro Mexicano de Innovación en Energía Solar (CeMIE-Sol), within strategic project No. 120. DT is grateful for the Juan de la Cierva Incorporación (JdC-I) fellowship (Grant Number: IJC2020–045553-I) funded by MCIN/AEI/ 10.13039/501100011033 and by “European Union NextGenerationEU/PRTR”., Peer reviewed




Highly selective catalytic hydrodeoxygenation of guaiacol to benzene in continuous operation mode

Digital.CSIC. Repositorio Institucional del CSIC
  • Gracia Soguero, Jesús
  • Ayala Cortés, Alejandro
  • Di Stasi, Christian
  • Remón, Javier
  • Torres Gamarra, Daniel
  • Pinilla Ibarz, José Luis
  • Suelves Laiglesia, Isabel
8 figures, 1 table., Benzene, mostly produced from fossil fuel sources, is an essential chemical to many modern industries. Alternatively to non-renewable methods currently used, the present work explores using fast pyrolysis biomass-derived bio-oils to furnish this valuable platform molecule. Notably, we report for the first time the impact of different operational parameters on the highly selective continuous catalytic hydrodeoxygenation of guaiacol, a bio-oil model compound, into benzene using a Mo2C/CNF-based catalyst. The parametric study includes a first evaluation of the effect of the hydrogen pressure (25, 50 and 75 bar), temperature (300, 325 and 350 °C) and weight hourly space velocity (4 and 10 gorg gcat−1 h−1) on the guaiacol conversion and product distribution, and a subsequent long-term evaluation (30 h on stream) of the catalyst under appropriate processing conditions The experimental results revelated that our Mo2C/CNF was able to achieve a conversion of 90–98% with a relative amount of benzene in the liquid product up to 81% for at least 30 h without any sign of deactivation at 75 bar of H2 and 350 °C, which is a landmark achievement in the conversion of bio-oil derived molecules into platform chemicals., The authors are grateful for the financial support from the Spanish Ministry of Economy and Competitiveness (MINECO, Project ENE2017-83854-R) and the I + D + i project PID2020-115053RB-I00, funded by MCIN/ AEI/10.13039/501100011033 and by Aragón Government (Research Group Reference T06-23R). J.R., DT and CDS are grateful to the Spanish Ministry of Science, Innovation and Universities for the Juan de la Cierva Incorporación (JdC-I) fellowships (Grant Number: IJC2018-037110-I, IJC2020-045553-I and JDC2022-048765-I, respectively) awarded. J.R. also thanks MCIN/AEI/10.13039/501100011033 and the European Union «NextGenerationEU»/PRTR» for the Ramón y Cajal Fellowship (RYC2021-033368-I) awarded, and the Aragón Government (Research Group Reference T22_23R) for providing frame support. JG is grateful to the Spanish Ministry of Science, Innovation and Universities for his FPI (PRE2018-085182) fellowships., Peer reviewed




Hidrotratamiento de aceite de cocina usado y grasas residuales con donores de H2 para la obtención de diesel verde usando catalizadores soportados en nanofibras de carbono

Digital.CSIC. Repositorio Institucional del CSIC
  • Muñoz, Edgar
  • Ayala Cortés, Alejandro
  • Di Stasi, Christian
  • Torres Gamarra, Daniel
  • Pinilla Ibarz, José Luis
  • Suelves Laiglesia, Isabel
2 figuras.-- Abstract de la comunicación oral presentada en la XVI REUNIÓN GEC 2023 en la sección Aplicaciones catalíticas, medioambientales y biosanitarias, Gijón (España), celebrada del 22 al 25 de octubre de 2023., Los aceites de cocina usados (ACU) y las grasas animales residuales representan una materia prima
atractiva para la generación de biocombustibles. El biodiésel, que se obtiene mayoritariamente mediante
transesterificación de aceites y grasas, se emplea como alternativa al diésel derivado del petróleo. Sin embargo,
éste no presenta una calidad combustible comparable a la del diésel convencional. Una ruta alternativa como
el hidrotratamiento (HT) catalítico (vía reacciones de hidrodesoxigenación (HDO) y descarboxilación (DCO)
[1]) permite la generación de lo que se denomina diésel verde, de calidad análoga al diésel convencional, y
que está formado por hidrocarburos (HC) lineales en el rango de 15 a 18 átomos de carbono. Con el objetivo
de favorecer la ruta HDO, se requiere una cantidad muy alta de H2 externo para poder eliminar todo el
oxígeno presente, lo cual representa un problema tanto económico como de seguridad [2]. Otra opción es
la utilización de H2 obtenido con donores [3]. En este trabajo, se muestran los resultados de la utilización de
metanol, propanol y ácido fórmico como donores de H2 (además de decano como solvente de referencia) en
el proceso de HT de ACU., Este trabajo ha sido financiado por el Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación
(AEI/10.13039/501100011033) a través del proyecto de I+D+i PID2020-115053RB-I00 y por FEDER Una
manera de hacer Europa. AM agradece la concesión de la ayuda predoctoral PRE2021-098829 asociada
a dicho proyecto. D.T. agradece al MICIN la concesión de la ayuda Juan de la Cierva Incorporación (JdC-I)
(IJC2020-045553-I). los autores también agradecen al Gobierno de Aragón por la subvención concedida al
Grupo de Conversión de Combustibles (T06_23R)., Peer reviewed




Nanopartículas de rutenio soportadas sobre nanofibras de carbono para la valorización de los efluentes generados durante la extracción de nanocelulosa

Digital.CSIC. Repositorio Institucional del CSIC
  • Frecha, Esther
  • Remón, Javier
  • Sulaeman, Allyn P.
  • Matharu, Avtar S.
  • Suelves Laiglesia, Isabel
  • Pinilla Ibarz, José Luis
1 figura.-- Póster presentado en la XVI REUNIÓN GEC 2023 en la sección Aplicaciones catalíticas, medioambientales y biosanitarias, Gijón (España), celebrada del 22 al 25 de octubre de 2023., En un contexto de biorrefinería y desarrollo sostenible, la síntesis de materiales, productos químicos
y energía a partir de recursos renovables es una tarea prioritaria. Para asegurar la viabilidad económica
y medioambiental de estos procesos, sin embargo, es necesario incluir la recuperación de corrientes
secundarias en la estrategia de valorización global. En esta línea, el presente trabajo describe una propuesta
de biorrefinería basada en el proceso de defibrilación de celulosa a partir de pericarpios de almendra, en la
que varias tecnologías de hidrotratamiento (hidrogenación y desoxigenación) fueron interconectadas con las
etapas adecuadas de separación y extracción para la obtención simultánea de azúcares alcohólicos (sorbitol
y xilitol) y una fase orgánica útil como fuente adicional de productos químicos y/o energía., Los autores agradecen el apoyo financiero del Ministerio de Economía y Competitividad de España
(MINECO, Proyecto ENE2017-83854-R), al proyecto de I+D+i PID2020-115053RB-I00, financiado por MCIN/
AEI/10.13039/501100011033 así como al Gobierno de Aragón por la subvención concedida al Grupo de
Conversión de Combustibles (T06_23R)., Peer reviewed




Hidrotratamiento de ceras de Fischer-Tropsch mediante catalizadores soportados en nanofibras de carbono

Digital.CSIC. Repositorio Institucional del CSIC
  • Andrades García, María
  • Di Stasi, Christian
  • Torres Gamarra, Daniel
  • Pinilla Ibarz, José Luis
  • Suelves Laiglesia, Isabel
1 figura, 1 tabla.-- Póster presentado en la XVI REUNIÓN GEC 2023 en la sección Aplicaciones catalíticas, medioambientales y biosanitarias, Gijón (España), celebrada del 22 al 25 de octubre de 2023., Uno de los principales desafíos asociados a la producción de hidrocarburos mediante procesos de Fischer-
Tropsch (FT) a partir de gas de síntesis (syngas) es la dificultad de controlar la longitud y el grado de
ramificación de las cadenas de los hidrocarburos generados. Las ceras FT, hidrocarburos con más de 21
átomos de carbono, representan aproximadamente el 25-45% en peso de los productos [1]. Éstas presentan
una alta temperatura de fusión, encontrándose en estado sólido a temperatura ambiente, lo que disminuye
la rentabilidad económica del proceso FT. Por tanto, para mejorar el rendimiento de esta reacción y obtener
un producto enriquecido en cadenas de hidrocarburo más cortas que las de partida y con un elevado nivel
de ramificación, lo que mejora sus propiedades en frío, es necesario someter a estas ceras a procesos de
hidrocraqueo (HC) e hidroisomerización (HI) [2]. En este trabajo se sintetizaron catalizadores bifuncionales que combinan sitios activos de naturaleza metálica y sitios ácidos, capaces de hidrocraquear y/o hidroisomerizar ceras de FT, con el fin de obtener un producto apto para uso como combustible de aviación., Este trabajo ha sido financiado por el Ministerio de Ciencia e Innovación (MCIN)/Agencia Estatal de
Investigación (AEI/10.13039/501100011033) a través del proyecto de I+D+i PID2020-115053RB-I00 y por
el MCIN con fondos NextGenerationEU de la Unión Europea (PRTR-C17-I1) dentro del programa Energía
e Hidrógeno Verde-CSIC, como parte de la Plataforma Temática Interdisciplinar del CSIC (PTI+) Transición
Energética Sostenible+ (PTI-TRANSENER+). Se agradece al Gobierno de Aragón por la subvención
concedida al Grupo de Conversión de Combustibles (T06_23R). D.T. agradece al MICIN la concesión de la
ayuda Juan de la Cierva Incorporación (JdC-I) (IJC2020-045553-I)., Peer reviewed




An innovative ‘sea-thermal’ synergetic biorefinery for biofuel production: Co-valorization of lignocellulosic and algal biomasses using seawater under hydrothermal conditions

Digital.CSIC. Repositorio Institucional del CSIC
  • Zhou, Yingdong
  • Remón, Javier
  • Ding, Wei
  • Jiang, Zhicheng
  • Pinilla Ibarz, José Luis
  • Hu, Changwei
  • Suelves Laiglesia, Isabel
8 figures, 2 tables.-- Supplementary information available., This study explores the co-hydrothermal treatment (co-HTT) of almond hulls and Chlorella Vulgaris using seawater as an alternative HTT medium. The influence of the feedstock (individual biomass and all the possible binary mixtures) was systematically evaluated under different conditions (reaction temperatures and times). The feedstock mixture and hydrothermal conditions significantly influenced the overall product distribution: gas (1–5%), hydrochar (6–56%), biocrude (6–55%), and aqueous fraction (33–52%), along with the most representative physicochemical and fuel properties of these products. Notably, the biocrude had a calorific value of 24–31 MJ/kg, whereas the hydrochar shifted between 3 and 26 MJ/kg. The degradation of abundant polysaccharides in almond hulls produced acidic species, promoting the degradation of proteins to N-containing species in biocrude. The synergies between microalgae and almond hulls favored the deamination of amino acid and repolymerization of formed monomers. Process optimization revealed that the best biocrude production (59% yield and HHV = 28 MJ/kg) was obtained by treating C. Vulgaris at 268 °C for 180 min. Contrarily, the HTT of almond hulls under optimum processing conditions (300 °C and 112 min) also produced an energy-dense biocrude (29 MJ/kg) but with a much lesser yield (16%). However, such a low biocrude production can be synergistically increased up to 33 %, maintaining the HHV (31 MJ/kg), including up to 61 wt% of C.Vulgaris into the feedstock, with a feedstock energy recovery of 75%. Holistically, the co-HTT of 40 wt% C. Vulgaris and 60 wt% almond hulls at 300 °C for 180 min produced energy-dense liquid (23% yield and HHV = 32 MJ/kg) and solid (29% yield and HHV = 25 MJ/kg) biofuels simultaneously, with a feedstock energy recovery of 80%. Given these excellent prospects, this strategy provides timely and new insights into developing synergetic strategies to utilize microalgal and lignocellulosic biomasses more efficiently, paving the way toward developing holistic and unseasonal biorefinery processes., This work was funded by MCIN/AEI/10.13039/501100011033 (I + D + i project PID2020-115053RB-I00) and by the Aragón Government (Research Group Reference T06-23R). This work was also financially supported by the National Natural Science Foundation of China (No. 21536007), the 111 project (B17030), and the Beijing Nova Program (Z211100002121085). Yingdong Zhou acknowledges the support from the China Scholarship Council (CSC No. 202006240156). Javier Remón is grateful to the Spanish Ministry of Science, Innovation and Universities for the Juan de la Cierva (JdC) fellowship (Grant Number IJC2018-037110-I) and thanks MCIN/AEI/10.13039/501100011033 and the European Union « NextGenerationEU»/PRTR » for the Ramón y Cajal Fellowship (RYC2021-033368-I) awarded, and the Aragón Government (Research Group Reference T22_23R) for providing frame support., Peer reviewed




Hydroprocessing of waste cooking oil to produce liquid fuels over Ni-Mo and Co-Mo supported on carbon nanotubes

Digital.CSIC. Repositorio Institucional del CSIC
  • Ferrerira, Karoline K.
  • Di Stasi, Christian
  • Ayala Cortés, Alejandro
  • Ribeiro, Lucília S.
  • Pinilla Ibarz, José Luis
  • Suelves Laiglesia, Isabel
  • Pereira, Manuel Fernando R.
7 figures, 3 tables.-- Supplementary information available., New fuel production alternatives are becoming increasingly necessary to replace fossil energy sources and reduce the environmental implications of carbon emissions. In this context, renewable sources, such as waste cooking oil (WCO), are an excellent choice for producing bio-based fuels. However, to use WCO as fuel, the oxygen content in its triglyceride structures must be removed. To this end, bimetallic Co-Mo and Ni-Mo supported on pristine carbon nanotubes (CNT) and oxidized carbon nanotubes (CNTox) were synthesized to investigate the hydroprocessing of WCO in a batch reactor operating at 350 °C, 70 bar of H2 (evaluated at ambient temperature) for 3 h. The results showed that Ni-Mo/CNTox exhibited superior catalytic performance, mainly producing n-alkanes in the range of C14-C22 with a carbon conversion of about 67 mol.% and being selective for light alkanes (6.6 mol.% of C5-C7), jet fuel (11.4 mol.% of C8-C16) and diesel fuel (81.2 mol.% of C17-C22). On the other hand, a residence time of 5 h was necessary to achieve the same results with the carbon-supported Co-Mo catalysts. Hydrodeoxygenation was the main deoxygenation route followed using CNT based catalysts., This work was supported by national funds through FCT/MCTES (PIDDAC): LSRE-LCM, UIDB/50020/2020 (DOI: 10.54499/UIDB/50020/2020) and UIDP/50020/2020 (DOI: 10.54499/UIDP/50020/2020); and ALiCE, LA/P/0045/2020 (DOI: 10.54499/LA/P/0045/2020). The authors are grateful for the financial support from the I + D + i project PID2020-115053RB-I00, funded by Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033). The authors also thank Gobierno de Aragón (DGA) for the financial support to Grupo de Conversión de Combustibles (T06_23). K. K. Ferreira acknowledges her Ph.D. scholarship (2022.12949.BD) from FCT. C.D.S is grateful for the Juan de la Cierva (JdC) fellowship (Grant Number: JDC2022-048765-I) funded by MICIU/AEI/10.13039/501100011033 and by FSE+., Peer reviewed




Supplementary material of Hydroprocessing of waste cooking oil to produce liquid fuels over Ni-Mo and Co-Mo supported on carbon nanotubes [Dataset]

Digital.CSIC. Repositorio Institucional del CSIC
  • Ferrerira, Karoline K.
  • Di Stasi, Christian
  • Ayala Cortés, Alejandro
  • Ribeiro, Lucília S.
  • Pinilla Ibarz, José Luis
  • Suelves Laiglesia, Isabel
  • Pereira, Manuel Fernando R.
Under a Creative Commons license BY-NC 4.0, https://creativecommons.org/licenses/by-nc/4.0/, Elemental analysis standards deviations:
Table S1. Standard deviations of C, H, O, Co, Ni and Mo for each sample.
List of identified compounds:
Table S2. Identified compounds in liquid and gas products by gas chromatography and their respective standard deviations.
XRD pattern of Co-Mo/Al2O3:
In Fig. S1, peaks correlated to the support γ-Al2O3 (2θ = 39.5° [111], 45.9° [200], 25.3° and 66.9° [220]) and MoO3 (2θ = 46.2° [220] and 67.5° [400]) were found overlapped [22]. Moreover, peaks of MoO2 (2θ = 37.1°) and hydrated Co2Mo3O8 (2θ = 39.8° [204]) were also observed.
TEM:
Fig. S2. TEM images of MoO2 inside the tube in Ni-Mo/CNTox.
STEM:
Fig.S3. STEM of Co-Mo/CNTox (a) and Ni-Mo/CNTox (b, c and d).
Isotherms:
Fig. S4. N2 adsorption-desorption isotherms of the catalysts and supports., This work was supported by national funds through FCT/MCTES (PIDDAC): LSRE-LCM, UIDB/50020/2020 (DOI: 10.54499/UIDB/50020/2020) and UIDP/50020/2020 (DOI: 10.54499/UIDP/50020/2020); and ALiCE, LA/P/0045/2020 (DOI: 10.54499/LA/P/0045/2020). The authors are grateful for the financial support from the I + D + i project PID2020-115053RB-I00, funded by Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033). The authors also thank Gobierno de Aragón (DGA) for the financial support to Grupo de Conversión de Combustibles (T06_23). K. K. Ferreira acknowledges her Ph.D. scholarship (2022.12949.BD) from FCT. C.D.S is grateful for the Juan de la Cierva (JdC) fellowship (Grant Number: JDC2022-048765-I) funded by MICIU/AEI/10.13039/501100011033 and by FSE+., Peer reviewed




Catalytic hydrodeoxygenation of waste cooking oil into green diesel range hydrocarbons: From batch to continuous processing

Digital.CSIC. Repositorio Institucional del CSIC
  • Muñoz-Arjona, Andrés
  • Ayala Cortés, Alejandro
  • Torres Gamarra, Daniel
  • Pinilla Ibarz, José Luis
  • Suelves Laiglesia, Isabel
9 figures, 3 tables.-- The underlying dataset has been published as supplementary material of the article in the publisher platform at DOI 10.1016/j.cej.2024.158303, Green diesel produced via hydrodeoxygenation of oil and fat waste has emerged as a cleaner, higher quality product with better cold flow properties than traditional biodiesel. The development of non-sulfided catalysts for this process has attracted the attention of the research community. In this work, we demonstrate the potential of Mo2C catalysts supported on carbon nanofibers (CNF) in the HDO of used cooking oil. The effect of Mo loading and reaction temperature was analysed following an integrated approach: firstly, the catalyst performance was studied using stearic acid as a model compound in a batch reactor; then, the catalytic performance was evaluated in a trickled-bed reactor using waste cooking oil as feedstock. We demonstrated that the HDO of used cooking oil with Mo2C/CNF based catalysts was possible, obtaining high yields (86 mol %) to hydrocarbons in the range of green diesel. It was also stated that the direct HDO route was favoured over decarboxylation/decarbonylation routes. The catalytic performance obtained with different Mo containing catalysts was successfully correlated with the characterization results. The results gathered in this work represent a step forward in the use of Mo carbide catalysts in HDO processes and may pave the way for the deployment of this catalytic technology., This study was funded by MCIN/ AEI/10.13039/501100011033 (Project PID2020-115053RB-I00) and the Aragón Government (Research Group Reference T06-23R). This study was also supported by MCIN with funding from European Union NextGenerationEU (PRTR-C17.I1) within the Green Hydrogen and Energy Program- CSIC, as part of the CSIC Interdisciplinary Thematic Platform (PTI + ) Transición Energética Sostenible+ (PTI-TRANSENER + ). A.M. is grateful for the predoctoral fellowship (Grant Number: PRE2021-098829) funded by MCIN/AEI/ 10.13039/501100011033 and by European Social Fund Plus (ESF + ). C.D.S is grateful for the Juan de la Cierva (JdC) fellowship (Grant Number: JDC2022-048765-I) funded by MCIN/AEI/ 10.13039/501100011033 and by “European Union NextGenerationEU/PRTR. DT is grateful for the Juan de la Cierva Incorporación (JdC-I) fellowship (Grant Number: IJC2020–045553-I) funded by MCIN/AEI/ 10.13039/501100011033 and by “European Union NextGenerationEU/PRTR., Peer reviewed




Design of highly active Ni catalysts supported on carbon nanofibers for the hydrolytic hydrogenation of cellobiose

Zaguán. Repositorio Digital de la Universidad de Zaragoza
  • Frecha, Esther
  • Remón, Javier
  • Torres, Daniel
  • Suelves, Isabel
  • Pinilla, José Luis
The direct transformation of cellulose into sugar alcohols (one-pot conversion) over supported nickel catalysts represents an attractive chemical route for biomass valorization, allowing the use of subcritical water in the hydrolysis step. The effectiveness of this process is substantially conditioned by the hydrogenation ability of the catalyst, determined by design parameters such as the active phase loading and particle size. Herein, mechanistic insights into catalyst design to produce superior activity were outlined using the hydrolytic hydrogenation of cellobiose as a model reaction. Variations in the impregnation technique (precipitation in basic media, incipient wetness impregnation, and the use of colloidal-deposition approaches) endowed carbon-nanofiber-supported catalysts within a wide range of Ni crystal sizes (5.8–20.4 nm) and loadings (5–14 wt%). The link between the properties of these catalysts and their reactivity has been established using characterization techniques such as X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma-optical emission spectroscopy (ICP-OES). A fair compromise was found between the Ni surface area (3.89 m2/g) and its resistance against oxidation for intermediate crystallite sizes (∼11.3 nm) loaded at 10.7 wt%, affording the hydrogenation of 81.2% cellobiose to sorbitol after 3 h reaction at 190°C and 4.0 MPa H2 (measured at room temperature). The facile oxidation of smaller Ni particle sizes impeded the use of highly dispersed catalysts to reduce the metal content requirements.




A novel ‘sea-thermal’, synergistic co-valorisation approach for biofuels production from unavoidable food waste (almond hulls) and plastic residues (disposable face masks)

Zaguán. Repositorio Digital de la Universidad de Zaragoza
  • Remón, Javier
  • Zapata, Gonzalo
  • Oriol, Luis
  • Pinilla, José Luis
  • Suelves, Isabel
This work first-time addresses the synergetic hydrothermal co-valorisation of almond hulls (an unavoidable food waste) and FFP2 face masks (a common plastic material) using seawater (a sustainable reaction medium). The effects of the feedstock composition (each material alone and all possible binary combinations) and the reaction medium (deionised water, seawater and all possible binary mixtures) have been evaluated at 350 °C and 170 bar over a wide range of reaction times (20–180 min). Bilateral biomass-plastic synergistic and antagonistic interactions between both feedstocks, combined with several promoting and inhibiting effects displayed by seawater, ruled the distribution of the reaction products and their most important physicochemical and fuel properties. Process optimisation revealed that the formation of an energy-dense (32 MJ/kg) liquid biofuel was maximised (26% biocrude yield) by conducting the process with almond hulls in deionised water for 115 min. At the same time, face masks promoted solid biofuel formation (83% hydrochar yield, 46 MJ/kg) by coprocessing an almond hulls/disposable face masks mixture (8:92 wt%) in salted (seawater/deionised water mixture with 37471 ppm salinity) water for 180 min. Conducting the process with seawater (44608 ppm salinity) for 180 min allowed coprocessing of both materials (22/78 wt% almond hulls/face masks) efficiently to maximise biofuels production (13% biocrude yield, HHV = 33 MJ/kg and 67% hydrochar yield, HHV = 49 MJ/kg). These results are a breakthrough in developing season-free and flexible biorefineries, which contribute to reducing pollution and bringing out the hidden value of human activity common residues.




Catalytic hydrolysis of cellulose to glucose: on the influence of graphene oxide morphology under microwave radiation

Zaguán. Repositorio Digital de la Universidad de Zaragoza
  • Frecha, E.
  • Torres, D.
  • Remón, J.
  • Gammons, R.
  • Matharu, A.S.
  • Suelves, I.
  • Pinilla, J.L.
Carbon nanostructures provide a unique platform for the synthesis of novel catalysts for biomass conversion. In this work, a set of graphene oxide (GO)-based materials (nanofibers (GONF), sheets of few-layers (FLGO), and quantum dots (GOQD)), differing structurally in morphology and size, was prepared from fishbone-carbon nanofibers (CNF) and their catalytic behavior was compared on the hydrolysis of amorphous cellulose under microwave (MW) radiation. First, the influence of the reaction temperature (135–180 ºC), holding time (0–120 min), catalyst morphology and cellulose/water ratio (0.25–2.0 wt%) was thoroughly screened and compared with conventional heating mode. The use of GO morphologies in concert with MW energy showed the potential to achieve similar kinetic profiles than previously reported sulfonated carbons (110 kJ/mol) but using considerably less amount of catalyst (cellulose-to-catalyst ratio 12-fold lower). Overall, the reactivity of the GO-catalyst was related to their degree of oxidation/exfoliation, decreasing as follows: GOQD > FLGO > GONF. Compared with conventional heating, MW-technology enabled higher loadings of cellulose (2.0 vs. 0.25 wt%) to be processed in a shorter time (20 min instead of 24 h), which is a landmark achievement toward process intensification.




Optimisation of the processing conditions of hydrolytic hydrogenation of cellulose using carbon nanofiber supported Ni catalysts

Zaguán. Repositorio Digital de la Universidad de Zaragoza
  • Frecha, E.
  • Remón, J.
  • Torres, D.
  • Suelves, I.
  • Pinilla, J.L.
The synthesis of sorbitol from cellulose over Ni catalysts is a promising valorisation route in the biorefinery scenario, applying relatively simple preparation methods and earth-abundant metals. The overall selectivity, however, depends on the kinetic control of a complex reaction network, involving the hydrolysis of cellulose to monosaccharides via cello-oligomers, glucose hydrogenation into sorbitol and hydrogenolysis side-reactions of sugars and sorbitol to low molecular weight polyols. Therein, subtle changes in the catalyst composition and process conditions might have a strong impact on the final product distribution. Driven by these challenges, this work first-time provides novel insights into the hydrothermal hydrogenation of cellulose over a carbon nanofibre supported Ni catalyst (Ni/CNF). Firstly, the impact of the duration of a ball-milling pre-treatment step and the influences of the hydrothermal time and temperature were thoroughly analysed. The experimental results obtained highlighted the importance of process control to promote the first transformation of cellulose to glucose and its subsequent hydrogenation to sorbitol to minimise the extension of side reactions. Finally, an additional study was conducted to palliate the recalcitrant nature of cellulose by decreasing mass transfer limitations to a minimum extent. This was achieved by including an additional mix-milling of the amorphous cellulose produced in the first pre-treatment with the catalyst and increasing the H2 pressure of the hydrothermal hydrogenation process. This allowed attaining a sorbitol yield as high as 62% at 190 ºC using an initial H2 pressure of 8 MPa for 26 h, which is one of the best results reported in the literature.




Catalytic valorisation of the effluents generated during the defibrillation process of cellulose from almond hulls: A holistic zero-waste biorefinery approach

Zaguán. Repositorio Digital de la Universidad de Zaragoza
  • Frecha, E.
  • Remón, J.
  • Sulaeman, A.P.
  • Matharu, A.S.
  • Suelves, I.
  • Pinilla, J.L.
The acid-free hydrothermal microwave–assisted selective scissoring (Hymass concept) of cellulosic substrates is gaining keen interest in the field of materials science. Besides, implementing catalytic methodologies to upgrade side streams produced during this process could contribute to better, holistic utilisation of the starting feedstock. This work depicts a zero-waste biorefinery concept based on cellulose defibrillation from almond hulls using various hydrotreatment technologies (hydrogenation and hydrodeoxygenation) for downstream processing on a ruthenium catalyst. Therein, the hemicellulose separated from the biomass preconditioning step was converted into sugar alcohols and/or marketable polyols with a relatively high yield (47.4%) by hydrolytic hydrogenation (437 K, 3h, 5.0 MPa H2). Meanwhile, a family of bioactive compounds (3-hydroxypyridines) could be directly extracted from the hydrolysate stream derived from microwave digestion, along with an energy carrier that was chemically stabilised (503 K, 60 min, 4.0 MPa H2) to obtain fuel additives (diethyl succinic acid, DES) and/or fuel intermediates.




Highly selective catalytic hydrodeoxygenation of guaiacol to benzene in continuous operation mode

Zaguán. Repositorio Digital de la Universidad de Zaragoza
  • Gracia, J.
  • Ayala-Cortés, A.
  • Di Stasi, C.
  • Remón, J.
  • Torres, D.
  • Pinilla, J.L.
  • Suelves, I.
Benzene, mostly produced from fossil fuel sources, is an essential chemical to many modern industries. Alternatively to non-renewable methods currently used, the present work explores using fast pyrolysis biomass-derived bio-oils to furnish this valuable platform molecule. Notably, we report for the first time the impact of different operational parameters on the highly selective continuous catalytic hydrodeoxygenation of guaiacol, a bio-oil model compound, into benzene using a Mo2C/CNF-based catalyst. The parametric study includes a first evaluation of the effect of the hydrogen pressure (25, 50 and 75 bar), temperature (300, 325 and 350 °C) and weight hourly space velocity (4 and 10 gorg gcat−1 h−1) on the guaiacol conversion and product distribution, and a subsequent long-term evaluation (30 h on stream) of the catalyst under appropriate processing conditions The experimental results revelated that our Mo2C/CNF was able to achieve a conversion of 90–98% with a relative amount of benzene in the liquid product up to 81% for at least 30 h without any sign of deactivation at 75 bar of H2 and 350 °C, which is a landmark achievement in the conversion of bio-oil derived molecules into platform chemicals.




An innovative ‘sea-thermal’ synergetic biorefinery for biofuel production: Co-valorization of lignocellulosic and algal biomasses using seawater under hydrothermal conditions

Zaguán. Repositorio Digital de la Universidad de Zaragoza
  • Zhou, Yingdong
  • Remón, Javier
  • Ding, Wei
  • Jiang, Zhicheng
  • Pinilla, José Luis
  • Hu, Changwei
  • Suelves, Isabel
This study explores the co-hydrothermal treatment (co-HTT) of almond hulls and Chlorella Vulgaris using seawater as an alternative HTT medium. The influence of the feedstock (individual biomass and all the possible binary mixtures) was systematically evaluated under different conditions (reaction temperatures and times). The feedstock mixture and hydrothermal conditions significantly influenced the overall product distribution: gas (1–5%), hydrochar (6–56%), biocrude (6–55%), and aqueous fraction (33–52%), along with the most representative physicochemical and fuel properties of these products. Notably, the biocrude had a calorific value of 24–31 MJ/kg, whereas the hydrochar shifted between 3 and 26 MJ/kg. The degradation of abundant polysaccharides in almond hulls produced acidic species, promoting the degradation of proteins to N-containing species in biocrude. The synergies between microalgae and almond hulls favored the deamination of amino acid and repolymerization of formed monomers. Process optimization revealed that the best biocrude production (59% yield and HHV = 28 MJ/kg) was obtained by treating C. Vulgaris at 268 °C for 180 min. Contrarily, the HTT of almond hulls under optimum processing conditions (300 °C and 112 min) also produced an energy-dense biocrude (29 MJ/kg) but with a much lesser yield (16%). However, such a low biocrude production can be synergistically increased up to 33 %, maintaining the HHV (31 MJ/kg), including up to 61 wt% of C.Vulgaris into the feedstock, with a feedstock energy recovery of 75%. Holistically, the co-HTT of 40 wt% C. Vulgaris and 60 wt% almond hulls at 300 °C for 180 min produced energy-dense liquid (23% yield and HHV = 32 MJ/kg) and solid (29% yield and HHV = 25 MJ/kg) biofuels simultaneously, with a feedstock energy recovery of 80%. Given these excellent prospects, this strategy provides timely and new insights into developing synergetic strategies to utilize microalgal and lignocellulosic biomasses more efficiently, paving the way toward developing holistic and unseasonal biorefinery processes.